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Non-contact Wideband Sonar for Human Activity
Detection and Classification

Gaddi Blumroset Ben Fishmah Yossi Yovel

Abstract—This paper suggests using a wideband sonar
system to detect and classify human activity in indoor
environment. While most existing sonar systems used for
assessment of human activity are based on a narrowband
Doppler based technology, this paper suggest using
wideband sonar. It enables precise tracking of body parts,
and its enhanced correlation properties can be used to
distinguish between human and non-human objects.
Maximal Likelihood (ML) criterions to derive kinematic
features and analytical methods to estimate the subject
activity level and activity type were derived and tailored to
the wideband sonar. For tracking and association of the
echoes reflected from the different body part, we
developed an efficient approximation of the sequential ML
estimator. The algorithm works in the natural time-space
domain, which eases the exploitation of the a-priori
knowledge about the human subject target. For
classification of the activity, a weighted two level nested k-
Nearest Neighbor classifier was applied on only four
kinematic features. A set of experiments with five subjects,
performing three different activity types of standing,
walking, and swinging upper limbs, was carried out in a
typical indoor environment. The proposed technology has
managed to classify well the different activity types and
demonstrated the potential of this technology for
continuous assessment of various kinematic features of
humans in indoor environment with reduced costs, under
any light, smoke, or humidity conditions. This can be
useful for instance for monitoring patients at home, and
for detecting intruders.

Index Terms— classification, k-NN classifier, human
kinematics, sonar, and tracking.
I. INTRODUCTION

[2]. Human motion monitoring can help in detection of
intruders and abnormal activities and send an alert, assist in
the process of rehabilitation, design of treatment plans and
follow-up monitoring [3], enable diagnosis and treatment of
numerous neurological disorders [4], detect risk situations like
falls in elderly people homes [5], and in hospitals, assisting the
medical staff to monitor patients, in particular at night time.

Human subject kinematic assessment includes estimation of
different body part position, velocity, and acceleration. The
type of action is more abstract, has a temporal characteristic
and can be dividednto different classes such as standing,
moving from sitting to standing, walking, falling, and
jumping. Systems designed for human motion acquisition, can
be clasified by their technology, measurements, and
processing methods. Methods based on Inertial Navigation
System (INS) like in [6], or marker based optical systems like
[7], require the sensor, or the marker to be attached to the
body, which is sometimes not comfortable and furthermore,
often requires battery replacement every few daysong the
non-contact methods for motion acquisition, the most common
ones are based on optical, electromagnetic, and ultrasonic
technologies.

Optical technology is commonly used in gait analys
laboratories [8]. It is usually implemented by a video
recording system. It can enable estimation of a 3D pose and
shape of human targets from multiple, synchronized video
streams using an a-priori physical attributes of the targets, e.g.,
[9]. The estimation quality of optical methods is limited in
range, requires calibratioi(] and a-priori knowledge about
the human subject, heavy data streams, and compuatiation
resources for enhanced resolution. Optical systems also cannot
work in some conditions that are crucial for security like low
light and smoke conditions.

Electromagnetic based technologies can be based on narrow
band, or wideband signals. A narrow band radar has been used

I DENTIFICATION of an human subjeist kinematics and [11] for the detection and classification of patients’

characterization of his activityn different environments
over time plays an important role in security [1] and medicine
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movements and location based on the Doppler effect.
Reference 12] demonstrate how gait signature can be
effectively captured by feature vectors based on Doppler
effect Reference 1I3] uses a classifier on the human body
radar signature to characterize gait, in particular step rate and
mean velocity. TheMicrosoft Kinect™ (Kinect), an active
system, was recently developed for the game industry, and
becomes more popular for applications for human activity
acquisition [L5]. It radiates infra-red radiation, and from its
line of sight reflections, constructs an imadé][ The validity

of Kinect to assess human kinematic data compared with an
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optical marker-based 3D motion analysis was recentByploitation of the richness of a wide spectrubg][ A
performed in 17]. Still, the Kinect is restricted in rangd o compressed chirp, like FM chirps, can give a precise
around 2 meters from the system, and relatively a narrdacalization of the object and contain spectral information in a
location. An Ultra Wide-Band (UWB) radar, which uses darge bandwidth that can be used to detect object structure and
large portion of the radio spectrum, has recently beeometimes composition.
suggested for acquisition of body part displacement andThis paper presents a new wide-band sonar system based on
motion kinematics18]. The highEM transmission bandwidth Linear FM (LFM) chirp for human activity classificatior
yields accurate position location and possible materidaximal Likelihood (ML) criterion to derive target
penetration An algorithm for UWB radar-based humandisplacements over time based on the echo properties of delay,
detection in urban environments was presented%h These intensity, and the correlation of the echoes over space and time
technologies emit EM radiation to the environment, suffavas derivedFor tracking the echoes and the acoustic objects
from multi-path fading, and are mostly limited in range. they representan approximation of the Sequential ML

A sonar system consists of an ultrasonic transmitter aredtimator was derived based on echo parameters. The tracker
receiver. It transmits a pulse to the medium of interest, amahd the association of acoustic object to groups (clutters) that
from its echoes, it can construct an image of the objects argpresent real targets in the environments are performed in the
activities in the medium. When a human walks, the motion gpace-time domain. In the space-time domains, the different
various components of the body including the head, torsflections from objects are described by their location over
arms, legs, and feet produce an acoustic signature. A méime, which enable exploitation of the a-priori knowledge
degree of freedom in sonar systems is their pulse design. ™imut the human subject target in a relatively simple manner.
two basic ultrasound pulses include Frequency Modulatédirthermore, it enables direct extractof kinematic features,
(FM) wideband chirps, where the pulse starts with onéke target velocity, and target body parts' displacement
frequency and changes gradually during the transmission variability, that have clear physical meaning. As a classifier, a
another frequency, and of Constant Frequency (CF) pulsesighted two level nested k-Nearest Neighbor classifier was
[20]. The FM chirp enables high localization resolution andpplied on only four kinematic features of the clusters. The
exploitation of properties of the bandwidth to detect differertechnology was verified by a set of experiments with five
objects, while the CF pulse relies on detection of changessdunbjects, 3 males, and two females, performing three different
the received frequency caused by the Doppler shift, and thativity types of standing, walking, and swinging upper limbs
obtains information about the kinematics of objects in thie a typical indoor environment.
medium. In some sonar systems, as well as in animal's bio-The paper has three main contributions. A first contribution
sonar CF and FM pulses are used simultaneo€ly Echo lies in advantages of the suggested technology in tracking
processing techniques used by frequency-modulated bats thatnan targets in indoor environment, in compare to the
exploit both CF and FM pulses are shownat] [ common optical technologiesioncontact (does not require

The Doppler modulations contain unique target features aattaching markers to different body partsgn work under any
thus can be used to characterize and classify human acfivitylight conditions, and in the presence of smoke during a fire, or
portable acoustic micro-Doppler system operating in a 40 kHigh humidity conditions in bathroom, unlike marker based
acoustic frequency range, has managed to identify differemptical technologies, and maintains the privacy of the subject
gait cycles based on the sonar signat@@. [Average speed in situations where is needdike in bathroom, where the risk
of walking, torso velocity, walk cycle time, and peak legf falling is very high. A second contribution is in companiso
velocity, can be extracted by the micro Doppler sonograns sonar systems based on Doppler technology. The wideband
[23]. The performance of a range of classifiers and featussnar, can give accurate information about human body parts
extraction algorithms were presented i24][ Doppler location over time. This enables an enhanced classification of
signature can be used to distinguish between three human gaition activity and eases the exploitation of the a-priori
classes: one-arm swing, two-arms swing, and no-arms swikigowledge about the human subject target, compared to the
[25]. Reference 26] derived human kinematic features baseccommonly used frequency-time domains used in Doppler
on a model containing2 body parts. Doppler based sonatased methods. The high bandwidth also enables using the
system can assess the pattern of movement, aetl can enhanced correlation properties of the wide bandwidth signal
decompose the different body part movements, but canrtotclassify between human and non-human objects. The third
give precise information about the absolute location afontribution lies in the original processing techniques that
different body parts in time and space due to their relativelyere tailored to the high bandwidth pulse characteristics. This
long pulse duration and low correlation propertiesncludes the tracking of multiple targets in the room with low
Furthermore, due to its narrow band-width, it lacks theomplexity and minimal a-priory assumptiorextraction of
capability to distinguish between different static objects likenformative feature set, and the classification methods. The
stationary humans or walls. The absolute location of bogyocessing methods exploit the high accuracy distance
parts and the ability to detect static humans is important festimations, the enhanced correlation properties of the wide-
many applications in security and bio-mediciiéhile most band signal, and integrate available a-priori knowledge about
existing Doppler based motion acquisition systems utilize the human kinematics to the solution. The classification stage
low frequency spectrum, there is much potential inses these features directly, and is divided to different
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informative controllable stages that give maximal information
about human kinematics

This paper is organized as follows. Section Il describes the
active sonar modeling. Section lll, describes the human
kinematic modeling. Section IV, describes the data analysis
methods for tracking, associating the multi-paths, and
classifying the subject activity. Section V describes the
experimental set-up for evaluation of the new technology. In
section VI the experimental results are given and discussed.
SectionVIl summarizes the results and suggests directions for
future research.

1-D Sonar System

Processing |~
Unit

Fig 1. 1-D sonar based motion acquisition system in dooinenvironment.
The red circles represent the transmitted sphericaéwavd the blue curves

Il. ACTIVE SONAR MODELING the returning waves from the objects.

An active sonar node is composed of an acousti~
transmitted (speaker), an acoustic receiver (microphone), a
a processing and storage unit. A pulse is transmitted into t
medium where the object of interest is located. The son
receiver receives acoustical reflections of the transmitted pul
from the medium. The reflections convey information abou
object location, structure, and sometimes compositidf. [
First we define the signal and propagation model. To adopt tl
sonar to tracking subjects in an indoor environment we giy
the basic sonar design considerations. Then we define t
echoes' properties we use in our data analysis.
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A. Sonar Signal and Propagation modeling Fig 2. Extraction of echoes from the continuous remisignal The figure in
A received echo in the sonar is characterized by attenuatigfi 2otom. includes two main echoes in the period of rtita pulse
. . . repetition. Each section of the signal depicted betweso red lines
and delay 28]. The received signal for multiple pulse epresents one row ip.
transmission, at time instantes: The received signal in (1) is sampled ev&rseconds. The
r(t) = Ag Xk Bk (t-mT)p(t-mT-tp, 1) + n(b), (1) samples ofM consecutive pulse repetitions are stored in an

where p(t) is a transmitted pulse implemented byLFM  observation matrix, of sizeM x N,, whereN, = T /T is the

(Linear FM) chirp with a pulse widtf},, a bandwidthB, and a
a peak energyE; m is the pulse index and@ is the pulse
repetition time, i.e., the interval between 2 pulsgg; is the
k’th echo delay in the m’th pulse; B, is its related

number of samples for each pulse repetitiBnrow of ry

includes the received signal samples which represent the
different echoes of one transmitted pulse (Fig. 2). These
echoes are related to different reflection of the pulse at

attenuation factor which is commonly assumed constafiiiférent locations in the medium and therefore are related to
during the observation time and is affected by geometricﬁPat'al dimension. The pulse repetition period is defined such
factors and atmospheric attenuation factors, which depend Bt the last echo from the scanned space returns before the
temperature, humidity and frequencyt; is a gain factor NEXtsonar emission is emitted.

determined by the sonar bearing angle and the sonar received

and transmitted radiation pattern; ano() is an additive noise B. Indoor Tracking Sonar Design Considerations

component. The noise includes thermal and system noiserne sonar system design for tracking human subject should
which can be modeled by white Gaussian processes, a0d ilored to the target and environment. There are several
distortion from non-linearity of the speaker membrane. fundamental parameters that are assessed in most sonar

The sonar system can be extended to a set of multiRlésiems: target range, target location and orientation, target

sensor ngdes. Ea_ch sonar node is capable of se_nsin_g motipR target velocity, and target spatial-temporal pat& [
fe_atureg in one dimension (1-D). To assess motion in thre_e-rhe pulse energy and bandwidth need to be high enough to
dimensions (3-D) at least three senor nodes employed dfgple tracking the target in the indoor environment. The
different locations are needed2d]. Each object in the ghaiial resolution increases with frequency. Thus, the higher
environment reflects the signal according o its cross-sectiqfe frequencies are, the smaller objects will be detected. Bats
The cross section depends on thigect’s material, surface, se frequencies of up to 150 kHz, which enable them detecting
size, ancon the transmitted pulse’s frequency range. Figure 1. giects of size of less than a centimeter from a distance of a
shoyvs a 1-D sonar system in a scene with a person, wall, and @&qr PO. A pulse composed of high frequenciesiffers
chair. From each object there are different reflections of thg, gistortion of the signal due to increase attenuation in the
transmitted wave sound, observed in the receiver. high frequencies Z1]. of the signal. For tracking human
subjects' body parts, a spatial resolution of few square
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centimgers will be adequate. Thus a high frequency of 6@here df (t) is the I’th BP’s absolute displacement
kHz, which represent a wavelenght of around a centmietgomponent of very slow movements at instance titne
will be adequate for tracking human subject in an i”doc(rxz,s(t).yl,s(t).zz,s(t)). which reflects relatively static
enviroement, and yet will not suffer from signal distorrtioryjsplacements with low velocity and standard deviation
due to atteenuation. For the lower fregeucny we can choqggally with frequency content of less than 0.5 Hz, e.g. torso
freqency of over 20 kHz, which is the upper hearing range giovement; d?, is the Ith echoes' absolute displacement
humans. With pulse bandwidth between 20-60 kbady component of higher velocities and standard deviation at
parts and large scatterers in the medium, like walls, will refleglgionce  time t, (00 (0), yia(®), z1a(t)),  with frequency

most of the transmitted pulse with minimal dismrtioncontent in range of 0.5-3 Hz, and is related to motion of
Reflc_ectlons from small body parts_ W'th surfacgs of a fevefifferent body parts like leg82] and arms during performing
centimeters, or a textured surface with different distances fro ily life activities like lifing a bag, or walking®g]

the sonar will have a varying pattern, which can be It can be more informative to use the displacements relative

significantly different from wide reflectors like wallSQ. to the torso, instead of the absolute body part displacement. In

The maximum range qt which a target can b.e located ha%Qlking, where the wholdody moves, some of the body
guarantee that the leading edge of the received backscaggrts, ke the head, will have a relatively constant

from that target is received before transmission begins for t %placement from the torso, while the upper and lower limbs
next pulse. This range is called maximum unambiguous range| have a periodic displace}nent pattern
and is given by: '

T-T,
Rp = % (2) IV. DATA ANALYSIS

wherev, is the speed of sound and is around 343 m/s. The echoes' properties can be used to assess the human
From the unambiguous rangee maximal Pulse Repetition kinematics features by using advanced signal processing
Frequency (PRF) can be obtained/(2Rg +vT,). For methods. The analysis is applied for one sensor in a single
instance, for indoor environment with distances of up to dxis, which can be described as the radial axis (from the
meters, and of pulse duration of around 2.5 ms, the maximmalcrophone outside).
PRF is 48 Hz. The minimal PRI§,obtained from the minimal  Human activity classification in our system can be divided
range, which is determined mainly by the transmission delanto four main stagesn the first stage, properties of received
and in case of short FM chirp, is usually very low. echoes like range, intensity and correlations are used to detect
The Doppler shift is proportional to the target velocityacoustic objects and track their location over time using a
relative to the sonar, and inverse proportional to theariant of sequential MLE object tracking4]. Theseacoustic
transmission wavelength. A LFM pulsetolerant to Doppler objects referred in the paper just as objects, are sub-objects of
shift of up to 10 percent of its bandwidtB,/10 [31]. For atarget, or of a real object in the medium. They are related to
example, a 40 KHz Linear FM chirp would be tolerant t@ne or more echoes that shares similar echo properties and are
Doppler shift of up to 4 kHz, which is significantly more than

the typical Doppler shift range, which is up to 1 kHz( priorknowledge > (. sonarrawdata ' | Processing |

________________ ---- Phases

Therefore, for human detection, the Doppler effect of the LFI
based sonar can be neglected.

The achievable range resolution of a sonar system depe!
on the rangeof the transmission bandwidti3]], and is for

example, for a 40 kHz transmission, in the range of fe TraEidig
centimeters. Therefore, for tracking coarse human movemer -
a bandwidth around 40 kHz, can be adequate.
lll. HUMAN MOVEMENT MODELING Srenping
A human body can be described as a combination of bo { demair ‘ 1
parts (BPs). While the subject performs different kind c " Group Features’extraction |

activities, each of his/her body parts regypical kinematic |
pattern, which can be captured by the body part displacem
over time [L3]. The kinematic features of the human can bj
derived from the group of discrete numbers of body pa
dlspllacement_sl[7]. Each body part can be dividedto a Fig 3. Data processing flow consists of three main phasesitg objects
relatively static component (e.g. torso, head), and to dynangi€oustic), associating these objects to groups thatsentr targets or real
(e.g. upper and lower limbsmovement while Walking) objects, and in a final stage, classifying the humawigctype and level. At
components The displacement of theh body part in a each phase, a typical prior knowledge is used: aatbestic object tracking

. . o . stage, the continuity of the echoes; at the groupimase, the properties of
Cartesian coordinate axis, in reference to the sonar locationaget's dimensions, velocity, and standard deviatioitsabody parts in space

instance time is: and time; and at the classification phase, the kinenfattures, and the
number of body parts are used
di (t) = dis(£) + diy (o), ©) yp
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reflected from the same locatio8q. In the second stage, the normalized by a factor of the range, to enable tracking objects
objects (acoustic) are mapped to different groups (ck)stein different locations. The normalized intensity of the k'th
that represent the real target objects. In the third stage, featuaesustic object, at instance time m, is given by:

of the different object groups, like group average velocity, are ;m _ 4oBmiVE (4)
derived. In the fourth stage, the features are used to distinguish® (amF

between human and non-human object groups, and to estimgfrre Brics VE, and 4,, are the channel attenuation, peak
the activity level and activity type of object groups that relatgmplitude that is the square root of the peak energy, and the

to humans. Figure 3 shows the data processing flow. gain factor, as defined in (1¥; is the echoe index that relates
to thek'th acoustic object, anNF is a normalization factor,
A. Acoustic Objects Detection and Tracking which for a2D object is around 23(1].

All acoustic objects' (referred as objects, in compare toThe spatial-temporal correlations of the different received

target or real object) displacements in the medium over tﬁ%hoef |nd|c;ar;[e fon t.gﬁ.tc’b]?;t] char?'c tle trlst|cs. I? pet\trucu![ar,blt
observation time are estimated by using Multi-Targé{1 |(c:jafes on g$a5| 'f' ﬁ?f etspar:a-ertnpzrfa; ba terlz).ote
Dynamic Sequential MLE Tracking techniqu&g], which is used for association of ditierent echoes 1o aitierent objects.

a variant of a Sequential MLE Tracking technique. Before th he sp'atlal temporal correlations can be Sp“t. to §pat|al
tracking, a pre-processing stage on the raw data is performgafrelat'on’ of echoes reflected from different objects in the

and an echo processing stage in which the echoes' properﬁ% te dtlrt'netrl]nstance, at?_d io temporal corrtglatl?_ns, (?f ichoes
of range, intensity and correlations, are estimated. related to the same objects over consecutive time instances.

Let us denotepy, and p;™**, as the spatial correlation
Pre-processing stage coefficient between thkth and thd'th echoes at time instance

Pre-processing of the measurements incladgand Pass M, and the temporal correlation coefficient of the echoes that
Filter (BPF), match-filtering, frame synchronization, and echare related to thkth object at time instanee andm+1.
selection. A BPF on the received samples removes frequencies
that are out of the transmission band, and are related Titacking Criterion
interferers and other noise sources. The match-filtering The Maximum Likelihood (ML) criterion to extract from
operation detects the received echoes delays from T match filter outpur the set ofl body part displacements
observation matrixy. The matched filtered outputs during thethat belong to a human subject is:
observation time are stored in the matrirf sizeM x N,,. To d? = argmax,sP{r|d"}, (5
estimate the set of delays in théth frame, {t,,,}, a peak Wwhered® = [df,..d} ..d[] is a matrix of theL body part
detection is used on the on the match filter output. The delajisplacements in D-over observation tim&; andP() is a
are relative to the start of the frame. Frame synchronizationfgebability distribution function.
performed to estimate the start of frame. To reduce theThe received signal of one pulse repetition includes
computational resources, and exclude some of the noise, hilifierent echoes with a profile that change over time as the
Signal to Noise Ratio (SNR) echoes are selected usingtarget and other objects in the medium move. Since the
Detection Threshold (DT), which is related to the size of thfehannel and target distribution functions are not linear, solving

detected ObjeCt and the noise tolerance of the System_ the non-linear likelihood function in I50r mUlUple ObjeCtS is
cumbersome. The solution for two targets is given as a
Echoes' properties Extraction function of posterior likelihood probability densities of each

The basic echoes' properties of delay, intensity, and echdégget, and target detection probabilityg]. The posterior
spatial-temporal pattern can be used to detect and classify likglihood probability densities are hard to estimate, depend on
different targets (objects) of interest many parameters, and require extensive a-priori knowledge,

The distance between thih object and the sonar system atvhich is commonly not fully available in targets like humans
instance timem, can be denoted by, and is the round trip that change their position, activity, and shape continuously.
time divided by a factor of two Object position can be A simplified solution to (5) can be obtained by splitting the
obtained by the range, azimuth and elevation angles from tp@lution into two stages. In a first stage, all reflections from
sonar to the object, and by using multiple sonar senséijects in the medium, including reflections from different
located at different locations, using statistical or geometrictargets like human and other scatterers like walls or chairs, are
methods. In Doppler based systems object velocity can #acked using an acoustic tracking algorithm. The algorithm
assessed by the measure of Doppler shift. In a wideband so@#ploit constraints that reflect the difference in different
with a high Signal to Noise Ratio (SNR), the velocity can beeflections’ characteristics, like location, and correlation, and
estimated by deviation of the object location estimations ov#te continuity of motion in space and time. In a second stage,
time [31]. the different acoustic objects are mapped to different groups

Object dimensions can be estimated by analysis of tH@at relate to the different targets. At this stage, an a-priori
number of echoes reflected from an object, their spatignowledge about the targets, in space-time domains can be
spread, and by their energg]. One indication aboutbject’s ~ Used, instead of the cumbersome a-priori distribution functions
dimension is its related echoes' intens8y][ The intensity is that is needed for solving the general MLE
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For the acoustic object tracking, a constrained MLEBbjectsk, andl at time instancen, can be approximated by the

criterion can be defined as: following analytical function:
d = argmaxyP{r|d}, (6) M, = e‘“ADm(I,ﬁ)ﬁ(pm)y, C)
st m m S |ym m S ,m N where Adl, = |dm —dm_ll I = M pm are
ldi" — di'l < 6p, 1" = I*| < 67, plk < 6 ket k LoV IRE T maxramty Flb

|+t — dit| < 85, 1 — I < 8T, pr™ < 87 measures of distance, intensity, and cross-correlation between
where d =[d,,..d, ..dg] is the set of K objects’ thek'th and thd'th objects at time instaneg, anda, §8,y, are
displacements ’vectgrs ol\(/er time in the medium that af@nstants that are determined experimentally and reflect the

associated witl) groups (one group can be the target human‘}?"abli":,y and significtantcr? gf tthf, distanbcet;.ritntensity, t'anld

dm, andd™, ", andI", andpl’, andp™ ™, are the'th and Correlation measures to the detection probability respectively.

Kth obiects displ ¢ intensit 4 th ial The metric in (8), approximate the metric in (7), and maintain
objects displacement, Intensity, an € spanal apge asymptotic properties of the optimal solutiéri7) [42].

temﬁ?fa' tcgogrr;lsagchnchg?ffnglent tﬁs defined ;bove. t_TTe An objecti'th path metric is the sum of the branch metrics
coetficientsop, o7, 05, 0p, 0j, 0 are the corresponding spalialy, +; 4re related to the objects in the time inteWal

and temporal thresholds on the parameters that depend on the cm = ym'=m M )
i Lj -

medium and on the pulse properties, and can be determined T aml=m-w+1 i
experimentally. The time interval is called a constraint length and must be

The constraints are based on spatio-temporal correlations2¥§ €nough to reflect enough statistics to detect the object. But
the different echoes, and can be separated to tempc}%ﬁ_ Ion.g constraint Ieng'th, will result in ac.cumulanon of
constraints between successive pulse repetitions, and spatejimation errors, a@h will affect the tracking of fast
constraints between objects in different ranges. Echoes cld88vements. An objeqtat instance timen, is selected to be
in time and space are more likely to be related to the saffdated to an objedt according to the following criterion [15]:
object, and to have close delays, intensity, and to have mord = argmax;,(C["™" + M[j). 0
correlation to each other. In case the constraints are tailoredl 0 enable flexibility of the tracking scheme and for tracking
only to a specific to the target, the solution to (6) will coincidéynamic objects that can enter or exit the range of the sonar
with the solution to (5). The specific target constraints can [#d change their object properties in time and space, the
basedon the a-priori knowledge about a targa®]] like target implementation of the solution to (6) in the trellis diagram
size or shape. Still, these constraints are not always availatng/udesobject creation and deletion, splitting from one object
in particular when tracking dynamic scenes with targets tht two objects, and merging with existing one

change their shape. In casea new object enters the sonar coverage ramlge
creation process of a new object will staftthlere is no other
Sequential MLE approximation object in the trellis diagram with close enough metric to the

The tracking problem (6) can be solved using theew one, and the object exists over certain threshold duration,
sequential MLE 34] for all (acoustic) objects in the medium. which is usually in range of the constraint length, thenathe
This can be implemented with a Viterbi algorithd@][with a new object is created in the diagram. In case an object leaves
distance metric error that maximizes the constraindglie sonar coverage range, or gets too far from the sonar and
probability function in (6). the intensity goes below the detection threshold, the object

A trellis diagramis used to represent the different objectspath is cut in the trellis diagram. Objects can be split one from
possible locations over tim&or M discrete locations, a state another. For example, in case of a movement of a body part
at time intervalm, S;* andS/", represent the location of the away from the torso, like lifting an armvhere the object
kth andl'th objects. A path in the diagram is a transitiorgxceeds the constraint length, a new object that relates to the
between states at consecutive discrete time intervals. Ederso will be created. In the trellis diagram, the new object is
possible transition represents a possible motion of the objé&en as a split of the branch metric of the previous object. In
from one position to another. The transition between the stag&se an object, like an arm, returns back to the body, two or
depends on the PRF, amod the motion. Slow motion with more reflections from one object can be merged. A multi-path
high PRF will have fewer transitions in the trellis diagramcombining algorithm can be then applied. A post processing
Each "legal" transition between states at time instamcean Stage, to filter-out discontinuities and mitigate over missing
be defined as a branch with a branch meut; ,which is a estimations of an object due to noise, or scatterers similar, is
function of the similarity between consecutive states. THerformed.
branch matrix between objedtsandl, at instance timen can Figure 4 shows the trellis diagram during tracking of three

be defined similar to41], to maximize the likelihood ratio of: Objects:A, B and C. In Figure 4.a, the states are the set of the
m _ p@ld) % distances between the object and the sonar of the detected

U™ perla™y echoes marked by ellipses. The green color ellipses are states
This branch metric is a function of the distance between tvibat are not chosen. The pink ones are the location of the three
states, the pattern of the echo, and the echo inteRdityThe objects over time. The arrows in Figure 4.b represent the
branch metric can be normalized to values between 0 and Ictmsen branch metric magnitwd@&he sum of branch matrices
representa probability function. The branch metric betweerwith the lowest value over the constraint length is chosdn an
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B 7 g Sin grtzurp:ling of multiple objects can be defined as:
A Co—< ):) —>O—C /‘:\ ) M12 : IG = argmax,GmP{0K|IGm} 0.1)
E —@—& Sy © The criterion in (11) applies that an object will be related to
@ P ' @ a group, if its probability is higher than the one that the object
. e \g is related to the other group. Solution to the criterion in (11) is
== = = complex @1]. A simpler criterion can be to associate to each
I

-1 ) ; . o
\ Time [mT] Constraint Length’ targetits object separately based on it’s a-priori knowledge

and then, ira later processing stage, exclude estimation noise
—_— . .
(b) | from the targets estimations.
R | The set of indexes of objects mapped tojtitegroupé; at
m-W m-1

T
. P g m instance timem is denoted byIG}”. A MLE criterion for
Fig 4. A trellis diagram that implement the trackingoaihm in (L0) for three Mapping objects to thgh group can be defined as:

objects: A, B, and An panel a, the states are the set of the distancesdret Fm_ . { K m}
the object and the sonar of the detected echoes mayleltipses The arrows IG}' argmaxj Po |IGI' (12)
in panel b represent the chosen branch metric magnttudesponding to the S.t. (Oj) ,

states in panel a. The sum of branch matrices with theslovalue over the h 0¥ is th t of obiect ti lated to th
constraint length (4 pulse repetitions in the examglehbsen and maximizes where IS the set of objects properues relate 0 the

the ML probability criterion. Object A, represerds object (optical) of a approximated displacement vectaﬁj, andF(Oj) is the set of

static body. The algorithm is capable of mitigating rfusdetection of object : - : .
C (shown in blue color) by interpolation, and to dgrically delete and create att_nbUteS of thg'th target, which are assumed to be known a

new objects without prior assumptions, like the creatibobject B. priori.
To solve (2) with the constraint the probability function of

maximizes the ML probablllty criterion in (10) ObJeCt Ais athe Object properties can be used4][ The probabmty
static ObjeCt. ObJeCt B will be created if it lasts for more than @nction of the targets is not deterministiC, and hard to
pre-determined time, in the constraint Iength Misdetection m/ajuate_ A simp|er approach, can search in the Space_time
object C, marked by a light blue color, is mitigated byjefined by the trellis, set of objects in the area defined by the
interpolation, and becomes part of object C path over spaggget size 43]. The area boundaries can be set around the
and time. center location of the probability, which is usually denser or
with higher intensity. The central object, which is usually

B. Grouping to real Objects ) ) - )
The different objects (optical) are mapped to groups in more consistent and strong over time, is denoted as the main
) P bp group (ﬂ)'ect, and the other objects in the group, as sub-objects.

segmentation process, in which objects (optical) are assignecL simple realization of the algorithm can first detect a main
to different groups (clusters) that statistically relate to realb

. . . . object along a moving window of siz¢, and in boundaries
objects (targets) in the environme@8]. The assigned groups gsetermined by the maximal spread of body parts in the space-

and their related object properties are used for targe . . . )
classification ) prop 9 time diagramAD. The main object displacement can be

Many segmentation and grouping processes are supervis%@ﬁsgr iii%rr%'i?]g tt(())' the maximal intensity, in a recursive
and a training set is needed. Methods without or with minim3! ' g to:

- . L . m+1 K 4] +AD/2m
training usually require a-priori assumptiorf3][ Reference dj""" = max{I(0")}

d*-AD/2,m-W @3
43] carry outadetection phase using an unsupervised Markov K- 7 " .
[ wherelI (0") is matrix of intensities of thK objects.

random field (MRF) model and assuming a-priori spatial The criterion in (13) can be extended to include other
information on the physical size and geometric signature gI

the objects tributes of the constrainf&(0;) in (12). Such attributes can
For tracking human subjectafter the stage of tracking the be group velocity, _constituency over time, and distribution of
objects (acoustic), a-priory assumptions about the subjég? ]tctargzt group opjects;}].h in obi Il oth bi ,
features can be utilized in a simple manner, compared to théA‘ er ete.rmlnatlon 0 t.e m(z;un 0 Jec'g ab.ot er objects In
common assumptions about the a-prior distribution of tﬁge Sp"?‘ce'“me ar: assigne af) S;"m'o Jecl:_tsk.) Asd a post
reflections from the body4B]. Such assumptions can incIudeprl(_)l(;ess_"n_glJ s_tage, the groupfs ?]an d'?f o9 ?p It base fonh
the subject body size, the maximum spread of his body pal%, S|m|h§r|ty melasure EI the ! erent eatrl:res of the q
and his kinematic properties, like trajectory velocityisTér groups. This can also enable merging groups that correspon

priori knowledge can be translated to constraints on echotg?more than one different acoustic objects’ groups, which are

intensity, correlation, and spatial-temporal distribution on th Iepted from massive reflector; like walls in NLOS
space-time diagram. environment. For example, reflection from the floor of the

Let us definel;™ as object mapping index vector atSUbJeCt echoe_s . . . . .
instance timem in the length of number of object, Let us For determination of human motion kinematics, the objects

K . . can be divided to additional categories, according to their size,
denote byo~, .the ksgt of objects prﬁpler:tles that rg:catﬁ(to location, and kinematics statistics. A fundamewctsbgory is
objects An object !S ma?ppi? tot fﬁ grc.)up-G-, T the o dynamic and static objectSynamic objects are sub-objects
output of the mapping ig Ic™(q) =j. A criterion to the that fluctuates more than a certain threshold, usually around
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Sub object distinguish between different objects, in particular between
echoes that return from a human and ones that are reflected

from other objects.

Static
D. Human Motion Classification

Human motion classification is related to its sonar
signature. Different objects, different people, and people doing
different activity types, have different sonar signatures that

_ o _ _ _ characterize their body properties and kinemati&s [ In

Fig 5. Determination of object type in a group. Tteongest reflection is addition, the kinematic features that are unique to humans
usually marked as the main object in a group, and ther atfe called sub ! ) -
objects. The sub-objects are divided to static andrdimanes, and can be [45], can be aggregate@7]. To classify human activity level
used to form a feature set. or activity type, kinematic features of the body that form the

) ) sonar signature need to be derived. The classification can be

the main body of the group, e.g. lower and upper limbs aggiained by using the group features together with the features
dynamic parts, while walking. Static objects are sub-object$ each object in the group like object velocity, range,
that are relatively static in relation to the main-body (torsoyimensions, and pattern of change in time and sptgieThe
e.g. head. A threshold on the standard deviation of the objegissification can be formed in one stage or different stages.
location from the main object location can be used Bjyiding the classification process into multiple stages makes

determine if an object is dynamic or static. the analysis more observable and helps in controlling its
For example, three objects of torso, head, arms, and leggyByameters.

the human scheme in Figure 5, will be part of one group, that
relate to human. The torso will be the main object and thectivity lewel
head and hand will be sub objects. The arms and legs will beThe measure of human activity level is important indication
dynamic objects, and the torso, and head, which do not mayg patient monitoring. The feature§’, cGINGL, of group
relative to the main body, will be considered as static ObjeCtS\'/eIOCity sub-objects standard deviation‘ and number of
Similar to the object tracking stage, a post processing d§namic objects, respectively, can be used to assess physical
performed on the results of the grouping. It includes exclusigitivity. The velocity can be an indication if the human walks.
of objects that appears for only short instance time, or if§ghen a human is doing an action that involves the arm and
intensity is below a threshqldy filtering, that apply the pands movements, while staying in one location, dynamic
range, intensity and correlation group constraiAtsow pass oy parts will change their location, while the main body will
filtering can mitigate over inaccuracies in the interpolation angmain in one place. A simple classifier can be linear sum of

merging operations. the features, where each feature is weighted in the summation
according to its significance to the desired goal using a feature
C. Features' Extraction selection algorithm12).

To classify groups related to humaas opposed to groups
related to non-human objects, significant features should BEtvity type . .
extracted. This enables tracking only the desired object 10 classify simple activity types, the dynamic features of an
(human), and excludes clutters, like walls, based on tR¥erage window can be used] These features will enable
statistical characteristics. The second goal is to extract featufé&Ssifying between fundamental activity types like standing,
that can be used to classify activity level and type. Thaalking, and .domg physical activity that mcI_ude movement of
features can be divideidto kinematic features that relate toP0dy parts like hands or legs. To classify more complex
the distribution of displacement in the group, and to mor@ctivity types like sitting or lifting a bag, the classifier must
static features that are based on correlation propefs [ use a short observation window and a state diagram over time.
The dynamic features at instance timmecan be: 1) the More features should be added, including body part size and

average velocity of the main objeetS!; 2) average standard acceleration. A wide enough training set should be used. Since

deviation of the groups&:: or 3) number of dynamic objects the sonar system can also detect and classify other static or

in the groupNEt, over a time window dynamic objects in the room the context information can be
m .

Static features depend more on the objesize and pattern. adde_d. For instance, if_ the human subj(_ect approaches an area
In radar systems, where a large portion of the radiation c5 tis known to be a Ilbrary, fand then lifts his hands, we can
penetrate through the body, the reflection can be changedaﬁ]sume that the subject is taking a book from a shelf.
relation to tissue compositionld]. In sonar systems, the E. Classifierimplementation
reflection is mostly from the body surfacg7] and therefore, simple and effective classifier commonly used in sonar
human detection can be obtained by its distinct body surfaggstems is the k-Nearest Neighbor (k-NN) classifes.[An
structure. These features can be based on echoes’ pyisRct is classified by a majority vote of its neighbors in the
autocorrelation properties. For exampf&,, o5', mean and feature space, with the object being assigned to the class most
standard deviation of the auto-correlation function of the magommon amongst itk nearest neighbors in the feature space
object's echoes over a temporal window, can be used to
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(k is a positive integer, typically small). The basic high V. EXPERIMENTAL SETUP

dimension feature space k-NN classification suffers from The experimental setup is designed to produce a first order
over-sensitivity problems due to irrelevant and noisy featuregasipility test for the technology and to evaluate the system
The k-NN classification accuracy can be improved byerformance for classification of different fundamental
selecting relevant features, assigning a weight to each Ofigivity types. The experimental setup includes a sonar
[47], combining multiple classifiers using decision trees, angystem, a reference video system, and a processing unit. The
by selecting the begtvalue in a dynamic wayp] . _ experiment was performed in a 4x3x2.5° mon-acoustic

A k-NN classifier with 2-level decision trees, optimal.oom. in Tel-Aviv University, in Tel-Aviv, Israel.
feature weighting and k values can therefore be a goodrthe sonar system is shown in Figure 7. The processing unit
compromise between efficiency and performance. ORgas a |aptop (Dell, Vostro), and the reference video system
implementation can use a first decision level classifier thafas 5 webcam (Logitech, HD 720p) with 30 frames per
distinguishes between human and non-human groups. Sec@plond The sonar system was composed of an ultrasonic
decision level classifiers can then be used to classify activiynamic transmitter (speakerphone) and receiver (Avisoft
types and levels. This implementation can suffer from trailing\lc) and a synchronization cable. The speaker and the
classification error from the first level, but can minimize thes?ﬂicrophone were connected through a D\A converter (Avisoft
errors by a learning algorithm over time. INC, UltraSoundGate Player 116) and an A\D converter

Another implementation suitable for environments whergaisoft INC, UltraSoundGate 116Hm) to the laptop. The
the non-human objects are static includes two decision 'e‘é%{mpling receiver rate was 500 kHz. Both ultrasonic
classifiers. The first classification can be between static g&nsmitter and receiver were directional. with beam width of
dynamic objects, using a set of features that are related 4&und 30 degrees(]. Frequency responses and beams of the
motion kinematics. The second level classification can t%epeaker and microphones can be found §0].[ The
divided to two classifiers: 1) classification of the static objeirectionality of the sonar spatially filtered clutters and scenes
between non-human object and humans; 2) classification @kt were out of the area of observation. The pulse was a linear
thg dynamic ob!ects by different activity types and 'evelﬁpsweep FM chirp with frequency range that moved from 20
using the dynamic features. o _ _to 60 kHz, which resides in the frequency range defined in

For the dynamic classifier, motion kinematic features likq ¢ This frequency range is above human hearing, enables
main body velocity, number of dynamic body parts, and thgnge resolution in scale of a centimeter, and has a neglected
average standard deviation of the sub-object in the group 9B8Bppler shift The chirp was windowed by a Hanning window
be used. For the static classifier, correlation measurements ¢an,yoid clipping. The peak and Root Mean Square (rms)
be used to distinguished between static object and humans,g§es of the transmitted pulse were 102, and 92.5 dB SPL (at
they have different reflection surfaces and propert®s The 1 meter), respectively. These values were adequate for
output of the static classifier can be feedback to the activifyacking targets larger than afew square centimeters, which
classifier, decrease trailing error, and include a static positiiihe size of a typical body part. The pulse repetition rate was
of the human in the activity classification, and thus enhangg 4z which was assumed to be adequate for tracking normal
the overall classification accuracy. The features can bgotion patterns. The experimental setup is shown in Figure 8
weighted at each level according to their relevancy to the por first order feasibility of the tracking and grouping
specific classification, and thevalue can be higher in the first algorithm described in IV.A, and IV.B, 8 different
level, and lower in the second decision level in order to reduggperiments with multiple people performing different activity
trailing error. The decision tree, when applied for short iM§nes were performed in an indoor environment. In each
instances, and with a state diagram, can be applied to clasgeriment, the position of one or two subjects was estimated
more settle activity types, like lifting a bag. Figure 6 describegong 8 seconds. The human subjects were located inside the

the decision tree for the classifier. range captured by the sonar system, and were either standing,
. walking, or standing with arbitrary arm swing. A reference
Static Dynamic video system was activated simultaneously with the sonar

objects objects

system. The video frames were synchronized to the sonar
transmissions by synchronization pulse, at start of each
recording Snap shots of the different experiment sets as
captured by the video reference system are shown in Figure 9.

Static

positions For the evaluation of the classification algorithm described
like sitting, in IV.C and IV.D, a set of 150 experiments with three
or standing

different activity types was performed on five different people
(3 males, 2 females) with 10 repeats for each of thesthre
activity types. In each experiment a human located inside the
Fig 6. Two level decision tree k-NN classifier foriaity type and activity ;

level estimation. The non-human objects are assumed tatie Jhe static ran_g? captured by the S_Onar . system pe_rformed (_j|ffere_nt
positions of the human can be aggregated by the thassifier, in case activity types for 8 seconds: undirected walking, standing still
complex activities are classified. in different positionsand standing with arbitrary hand swing.

These activity types were chosen because they are

——— - —— -y
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fundamental in human motion. In addition, these activity types Wicrophono MEEEEED & am Video  Syiccable.
can be used to assess also activity level. For each experiment, v g Ny -
the sonar system was activated simultaneously with the video DIA :
reference system.

The data analysis methods in section IV were applied to the
raw data for the tracking and classification experiments. From
the experiments, 70 percent of the data (105 experiments)
were used am training set, and the other 30 percent (45
experiments)were used astest set. To increase classification
reliability, the subsets of training and test sets were resamplegl 7. The sonar system. It is composed of an ultrasomksmhone the
randomly 10 times §1]. Artifacts were removed from the A/D and D/A converters, a cable to synchronize theasmassion and

ception, and a computer which functions as a protgastsnt

training set for each feature by using a median filter. Eac?n —— T

experiment included only one known activity: walking, i
standing, or standing with swinging hand(s). The different W
groups were tagged according to different classes according to
the video reference: non-human static targets and subject
humans standing, walking or swinging hands. These tags
were used by the classifiers for the training set.

Three k-NN classifiers were used in a similar manner to the
one shown in Figure 5. For the first level classifier (between
static and dynamic targets), the features of the human related :
group (assumed as thigh group) were the average groupgg g Expenmental setup which include a subjectguaifig an activity, and

standard deviatiom;®!, and the average main body velocitys sonar system. The range between the subject and theveopdrom 0.5

*. The velocity had double weight compared to the standalfer t© 3 meters.

deV|at|0n. Artifacts were removed using a median filter wit
two standard deviations, and the value of k was 5. This high
value was chosen to produce a coarse clustering to red
trailing errors. For the second human detection classifier, t
features were group average standard deviatih, and
average and standard deviation of main body correlation ovs
time, ﬁGl . The median filter standard deviation was 1.1,__
and thek value was 2, to produce fine classification betweer
static targets like walls and humans. For the human activit
classifier, the features were in addition to the group averag
standard deviation and velocity, along with the averag
number of dynamic object®/%‘. The classifier artifact filter FEEE . "
was finer than the first classifier with threshold of 1.4 stashdar ~(c) (d)
deviation, and thé value was 2. Table 1 summarizes the k-
NN classifier configuration.

Person
preforming
activity

VI. RESULTS AND DISCUSSION

A. Pre-Processing

The received signal in frequency-time domains for one_
pulse repetition is shown in the spectrogram in Figure 10. Th
experiment includes a human subject standing at a distance
around 1.5 meters from the sonar, and a wall in the
background. The signal bandwidth is between 20-60 kHz, a

the peak frequency is in the middle. The first echo is the one
TABLE |

(9) h
Classifier type CLASSIF;';F;EJ?QSFIGURQTION Artiact filter Fig. 9. Different human tracking experiment sets asucagtby the reference
L video system. Figure.&, 9.b, and 9.c, demonstrate examplesadiuman

: : : (standard deviation) g hiect standing, swinging upper limbs, and walking tdwahe sonar system
Dynamic/Static 2v%,g% |5 2 and away, respectively. In experiments described in Figamsand 9.e, 9.1,
Non human static objeq ¢ pGl 2 11 and 9.g, and 9.h, two people are standing, one swgrigands and one subject
/Human Standing aft standing still; two people are walking to and frora #onar systeng subject

— - Gl _GinvGi stands in front of a chaig subject stands behind a chair swinging his hands,

Swinging Hands/walking | v%',g®'N®" | 2 14 and a subject walks around a chair, respectively.




Sensors-8562-2013 11

received at the moment of transmission directly from thB. Object Tracking and Grouping

speaker to the microphone, the second one, is composegtigure 12 shows the processing stages of the object
mainly of two echoes related to the subject, and the third ofgtection, tracking, and grouping algorithm as described in
to the echoes from the wall. The echoes from the wall agction IV.A. and IV.B in the space-time domains of the
more spread out, due to the relatively large reflection surfaceaxperiment shown in Figure 9.c. Figure 12.a shows the result
The observation matrix was calculated at the beginning gf the match filter after the thresholding operation. The late
each pulse repetition. Then, the received samples were matgbhoes are related to the wall, and the two fluctuating ones are
filtered with the transmitted pulse shape. The results wepgost likely the walking subjestbody parts. According to the
threshold to exclude reflections from small objects and noisgifferential distance of around 30 cm, using the video
Figure 11 shows the echoes' auto-correlation matrixes oy@ference, and geometric considerations, the sub-object that is
time for the walking subject in Figure 9.c. The fluctuatinghearer the sonar is the torso and the farther one is the upper
stronger echo returns from the walking subject (Figure 9.8)pdy, near the headFigure 12.b shows the results of the
and the later echoes return from the walls, and possibly frofaquential MLE object tracking with more than 20 different
indirect reflections from other objects in the room (Figurgpjects. Figure 12.c shows the last stage in object tracking of
9.b). The wall echoes change less over time, and hence gigt processing, in which missing estimations are mitigated
correlated. The wall mean and standard deviation values wege each object by interpolation. The next stage is the grouping
0.709, and 0.116, respectively, compared to 0.617, and 0.12p&rformed on the objects in the space-time diagram. First, the
and one of the upper echoes related to the wall (Figure 9.Rain object is detected in the space-time diagram according to
The wall echoes change less over time, and hence @ifensity and consistency over time according to (13). Then its
correlated. The wall mean and standard deviation values weggted sub-objects, with lower intensity, are chosen. The

0709, and 0116, reSpeCtiVer, Compared to 0617, and Olzﬂésults of grouping are shown in Figure 12d, where each
of the human. The difference can be explained by thfoup has a different color.
continuous change in the effective reflective surface, in the Figure 12.e shows the results after a group merging and
beam attenuation in different ranges and frequencies, and gitting algorithm based on similarity of the different group
cross section over time, caused by change in the subject's bdtures. There are 4 main groups, where each group is
parts’ location and orientation while walking. marked with a different color. The blue group, with its
The metric parameter valuesx,B,y, were chosen continuously moving displacements, is related to the subject
empirically in a way that minimizes the tracking error over ghe other three groups, marked by black, green, and red, are
range of train experiments. The values were found to Bgsociated with static objects from the scene. The black group
a=03,p=0.2y=003. These values reflect the higheris associated with a nearby static reflector, probably from a
importance of the distance and the intensity, while theurface near the sonar system, like the sonar itself. The green
correlation value is less distinctive, and therefore has a lay¥oup can be associated with direct reflection from the wall,
value. The correlation property, even with its relatively smalind the red group from wall sides, or from indirect reflections
weight, filters noise that has a very little correlation with thﬂ'om the wall via the floor. Red and green are Separated

transmitted pulses. groups, since the criterion for grouping was based on detection
avth Pulse repetition _m+1 of human motion and use the a-priori knowledge of human
S TNy ; body pa.rts’ maximal span. When . using only a-priori_
§ :l :l assgmptlon about human target S|ze,_other groups will be
< ) "projected” to human groups, at least in the sense ofpgrou
g« | 4 ! / spatial dimensions. Note that the objects in the wall groups,
é ’\ | \ | mainly the red group, fluctuate over space and time. This can
U D R e { be explained by estimation errors, and by the effect of non-
e ‘—T;e(:)_”" : stationary human movement.

Fig. 10. Signal spectrogram fom'th pulse repetition for the experiment To de_nve the grO_Up feature$’ theIObJeCtS n e"'leh group allre
described in (Figure 13.a). The first signal is of tlegmission, the second sorted into dynamic or static objects according to their
echo group is from the human, the third is from the wall. standard deviation from the main object as defined in section
' IV.B. Figure 12.f shows the results of this process: main body

(red) and its related static (black) and dynamic (purple)
objects, which are in case of a human, his torso and body-

“ parts.

- Figure 13 shows the final grouping results for the set of

: L e = experiments shown in Figure 9. The static walls in the
2 Simee) Time(s) background are well estimated in all experiments. There is
(a) b) ( more than one group that is related to the wall. This is due to

Flg 11. Auto-correlation matrix over time of the main echoéshe wall the W|de reﬂectlon Surface Of the Wa” and the a_pnory S'Ze Of

(Figure 11.a), and the walking subject (Figure JLifdr the experiment t t which defined 1.2 t ' t flect th f
described in Figure 9.c. The wall is more correlated witbwer variance. arg.e w !C was ?me aS. : me erstore ep € spanora

subjects limbs, as this method is dedicated to tracking people.

Time(s)
S kM w Ao ~
Time(s)
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In our method, there can be, multiple groups associated witfThe standard deviation of the group can better distinguish
target. Applying in future, multi-target target approach cahetween hand swinging and standing, and even the between
enable association of only one group to a target. the static object (wall). The second classifier between human
The main difference between standing still and swingingnd not human is used to distinguish between a human
arms (Figures 13.a, and 13.b) is of the larger spread outsthnding without movement, and other static objects. The
body parts that relate to the partial upper limb movemestubject does move slightly even when standing, and its surface
captured by the sonar. (The human group is colored blue; thas different echoes, therefore the standard deviation can also
walls are green and red). The change in the arm and hamused here. However, it does not classify some of the data,
orientation and effective surface, and in case of very rapéhd the correlation properties of mean and standard deviatio
movement, insufficient pulse repetition rate has causeder time, which indicate the surface pattern, are informative.
occasional discontinuity in location estimations over time. The For the third activity classifier, the velocity feature is the
experiment of walking without moving the upper limbsmost significant in case of activity type that involve walking,
(Figure 13.c) shows two distinct body parts (human in redhile the feature of standard deviation, is more significant in
color). Comparing the results to the video reference shows thilistinguishing between swinging hands and standing still. The
the main body part is related to the torso, and the upper baalstivity types in this experiment are separable in the different
part is related to the reflections from near the head. In tfieature spaces for the three decision tree classifiers. This
experiment with two people shown in Figure 13.d, the subjegistifies the use of a relatively simple classifier like thE&-
far from the sonar, near the wall is well distinguished from theassifier for an efficient performance, as it can operate well
wall (green), due to different group properties. The subjeatith separable distributions and a relatively low complexity.
close to the sonar swinging his upper limbs (blue), is 4
successfully estimated by the blue group. In Figure 13.e, two = —
people going in opposite directions, are well estimated, even |
when the radial distance of the two people is approximately'gz—'\
the same. This separation is possible due to the usage of
continuity of location in the tracking and in grouping methods,

and continuity of the subjéstvelocity in the grouping. % i 3 5 & 5 6 5 » IR S I A
The chair and person objects are successfully mapped to T'”’(eai;) T('g)e‘s’

different groups in Figure 13.f. The standard deviation of the .

standing subject is slightly higher than the chair due to slight F~=— — -

movements of the standing subject. In Figure 13.g, swinging 3 T o’ T

hands (green color), the chair (blue color) and wall, are well gﬁ‘*‘zz\m 2R gzd
distinguished according to the group spatial standard ° \\\\\ ’_4;?“ © 2
.. . . . . 1 N 1

deviation, ¢¢. The human group in Figure 13.h, in the

experiment of walking toward the sonar and crossing a chair, o—————+% ¢ 5 % of n 4 : !
is continuously successfully estimated (turquoise), not Time(s) Time(s)
including some body parts near the wall that were included in \ @ . ®

the group related to the wall. The chair group is splitinto two  |.=— - - — - b= — -
groups (yellow and purple). This is reasonable, as it was sf=== FA=

almost fully covered by the man, when he crossed past th% \// 2, \//

chair. In the future, information from additional sonar nodes > v\ = \/\

deployed in different locations could be used to merge these : 1 7

two objects that relate to the chair. e ————— .
The tracking and grouping results indicate on significant ° Time(s) Time(s)

differences in object properties between groups that are related (a) (b)

Fig. 12. Object detection, tracking, and grouping stagessjace-time
to humans and non-humarnisi addition to correlation and gram. Figure 12.a shows the result of the match &fter the thresholding

intensity properties, group kinematic features like velocity ar@)eratlon Figure 12.b shows the results of the sequititia object tracking

standard deviation of object locations, can help to classifgsults. Figure 12.c shows the result of object trackingost processing, in
human groups fromam-human groups, and can be a basis fd/ymch missing estimations are mitigated for each objgéhterpolation. The

e . L results of grouping are shown in Figure 12.d, wheré gaoup has a different
advanced classification of human activity level and type. color. Figure 12.e shows the results after a group mgrghd splitting

. e . algorithm based on similarity of the different grougatres. Figure 12.f
C. Ob]eCt Classification shows the sort results into dynamic or static objects dwprto their

Figure 14 shows the training set in the feature space for tfi@hdard deviation from the main object.
first, second, and third classifiers after artifact removal. For
the first classifier, (static or dynamic objects classifier), the
clusters appear well separated. The velocity feature can
distinguish between a walking and non-walking human, but
can hardly distinguish between standing and swinging hands.
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a : : 4 dynamic classifier. Standing and walls are more mixed, but
T — can be separated, mainly using the correlation property, based
on the information obtained using the high-bandwidth

£ - g o o L .
e WY #%\W@ﬁﬁ transmissions. Hence, the classification errors between static
1 [ objects and standing human are a result of the second
— e —— classifier.
0 2 4 6 8 0 2 4 6 8
Time(s) Time(s) 0.45, .
@ Q
4 4 o Swinging
L—— e 037 = Standing

e 0.25¢

_ ~ T oy 02t
E2 / E2 -
© ° 0.151
Mo By, ety
1 i 01 s

[

H

T
v(m/s)

0 L 0.05 . Dn"; g o
0 2 4 6 8 o 3 4 S . 0 Pt LI ’ ’
Time(s) Time(s) 0 0.1 0.2 0.3 0.4
(e}
c d
(©) (d) @

d(m)

s
Time(s)

®

s 05— g

d(m)
d(m)

05— e 0.8

Static
Standing
Swinging
Walking

T s s 1 s 0 2 4 6 8
Time(s) Time(s) 0.6+

(9) (h)
Figure13: Eight object grouping results for the experimentsashim Figure
9: ahuman subject standing, swinging upper limbs, walkimgtds the sonar
system and away, two people are standing, one swirlyamgls and one
subject standing still; two people walking to andnirthe sonar systens | 7
subject stands in front of a cha@rsubject stands behind a chair swinging his 9",& W B e
hands, and a subject walks around a chair, respbctiv 08 = &‘“_’,1;2 “Toa, M7

o 1 2 3

ooo
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o
S

The classification results are presented in Figilbe The
first classifier detected 2324, and 634, as static, and dynamic (© B _ _
groups (cluster of objects), respectively. The second cIassifEé?- 14. The feature space for the different classifiers. Stséc or dynamic;
h e . . .Nyman or non-human, and activity type classifiers aoevshn figures 14.a,
identified the static groups as standing and walls. The thllia_u and 14.c, respectively.
classifier distinguished between the two different activities,
walking and swinging hands. The total number of groups in all Figure 15.b describes the activity types classification
the experiments were 2051, 273, 327, 307, for the classespgfformance. A success in classification is defined when there
static groups (primarily the wall), standing, walking, ands at least one group that is classified to the correct activity.
swinging arms and hands, respectively. Similar to the classification for each object, walking is

Figure 15.a, shows the results for each target (group). Tekassified accurately (100 percent). The standing per
classification reference is the tagging of the groups accordiggperiment rate is lower than per group. In some experiments
to the video reference by an independent observer. Tf@v groups were identified as standing, and in some none. The
classification accuracy is around 97 percent for static objec&Vinging of upper limbs is classified correctly in almost 90
and 95 percent for dynamic objects, an average of 9@§rcent, compared to 77 percent in classification per-object.
percent. The walking activity is classified in the M98 The average higher percentage per experiment can be
percentile. Swinging hands is occasionally misclassified &plained by the criterion of having at least one true object
walking or standing, and only errors around 1% for statiglassification out of many. This non-rigid criterion is adequate
objects (wall). The wrong classification of the classes d@r tracking patient a subject activity during daily life routines,
walking or swinging arms, to standing or static object iwhere detection of even one activity over a short period of
partially explained by a towed-error from the first staticobservation time is adequate. The activity type classification
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results are summarized by Table II. during a fire, or high humidity conditions, as in a bath room
while maintaining the privacy of the patients.
100 3 Future experiments can use shorter observation periods to
EEIZ;‘Sm classify more subtle activity types, can use multiple sensor
8T E;Vv;':igf;gg nodes to give 2-D and 3-D tracking for enhanced classification
60 accuracy and can classify more complex activity like sitting

down, falling, or carrying a bag. Future aggregation of low
bandwidth Doppler pulses with the FM-ghiinspired by bio-
20 sonar, is expected to further improve the classification
o _ all accuracy.

Static - Standing - Walking - Swinging In the future this technology is expected to enable

40t

Classification(%)

@) continuous assessment of various kinematic features of

1007 BT humans with reduced costs, under any light conditions in
< 8o B False various environments. Unlike optical cameras this system can
g sl detect risk circumstances even in the presence of smoke
g during a fire, or high humidity conditiongsin a bathroom
Z 40J. where the risk of falling is very high, and still maintain
O 20 personal privacy.

Standing Walrking Swinging
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