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 
Abstract—This paper suggests using a wideband sonar 

system to detect and classify human activity in indoor 
environment. While most existing sonar systems used for 
assessment of human activity are based on a narrowband 
Doppler based technology, this paper suggest using 
wideband sonar. It enables precise tracking of body parts, 
and its enhanced correlation properties can be used to 
distinguish between human and non-human objects. 
Maximal Likelihood (ML) criterions to derive kinematic 
features and analytical methods to estimate the subject 
activity level and activity type were derived and tailored to 
the wideband sonar. For tracking and association of the 
echoes reflected from the different body part, we 
developed an efficient approximation of the sequential ML 
estimator. The algorithm works in the natural time-space 
domain, which eases the exploitation of the a-priori 
knowledge about the human subject target. For 
classification of the activity, a weighted two level nested k-
Nearest Neighbor classifier was applied on only four 
kinematic features. A set of experiments with five subjects, 
performing three different activity types of standing, 
walking, and swinging upper limbs, was carried out in a 
typical indoor environment. The proposed technology has 
managed to classify well the different activity types and 
demonstrated the potential of this technology for 
continuous assessment of various kinematic features of 
humans in indoor environment with reduced costs, under 
any light, smoke, or humidity conditions. This can be 
useful for instance for monitoring patients at home, and 
for detecting intruders. 

 
Index Terms— classification, k-NN classifier, human 

kinematics, sonar, and tracking.  
 

I. INTRODUCTION  

DENTIFICATION of an human subject’s kinematics and 
characterization of his activity in different environments 

over time plays an important role in security [1] and medicine 
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[2]. Human motion monitoring can help in detection of 
intruders and abnormal activities and send an alert, assist in 
the process of rehabilitation, design of treatment plans and 
follow-up monitoring [3], enable diagnosis and treatment of 
numerous neurological disorders [4], detect risk situations like 
falls in elderly people homes [5], and in hospitals, assisting the 
medical staff to monitor patients, in particular at night time. 

Human subject kinematic assessment includes estimation of 
different body part position, velocity, and acceleration. The 
type of action is more abstract, has a temporal characteristic 
and can be divided into different classes such as standing, 
moving from sitting to standing, walking, falling, and 
jumping. Systems designed for human motion acquisition, can 
be classified by their technology, measurements, and 
processing methods. Methods based on Inertial Navigation 
System (INS) like in [6], or marker based optical systems like 
[7], require the sensor, or the marker to be attached to the 
body, which is sometimes not comfortable and furthermore, 
often requires battery replacement every few days. Among the 
non-contact methods for motion acquisition, the most common 
ones are based on optical, electromagnetic, and ultrasonic 
technologies. 

Optical technology is commonly used in gait analysis 
laboratories [8]. It is usually implemented by a video 
recording system. It can enable estimation of a 3D pose and 
shape of human targets from multiple, synchronized video 
streams using an a-priori physical attributes of the targets, e.g., 
[9]. The estimation quality of optical methods is limited in 
range, requires calibration [10] and a-priori knowledge about 
the human subject, heavy data streams, and computational 
resources for enhanced resolution. Optical systems also cannot 
work in some conditions that are crucial for security like low 
light and smoke conditions. 

Electromagnetic based technologies can be based on narrow 
band, or wideband signals. A narrow band radar has been used 
[11] for the detection and classification of patients’  
movements  and location based on the Doppler effect. 
Reference [12] demonstrate how gait signature can be 
effectively captured by feature vectors based on Doppler 
effect. Reference [13] uses a classifier on the human body 
radar signature to characterize gait, in particular step rate and 
mean velocity. The Microsoft Kinect™ (Kinect), an active 
system, was recently developed for the game industry, and 
becomes more popular for applications for human activity 
acquisition [15]. It radiates infra-red radiation, and from its 
line of sight reflections, constructs an image [16]. The validity 
of Kinect to assess human kinematic data compared with an 
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optical marker-based 3D motion analysis was recently 
performed in [17]. Still, the Kinect is restricted in range of 
around 2 meters from the system, and relatively a narrow 
location. An Ultra Wide-Band (UWB) radar, which uses a 
large portion of the radio spectrum, has recently been 
suggested for acquisition of body part displacement and 
motion kinematics [18]. The high EM transmission bandwidth 
yields accurate position location and possible material 
penetration. An algorithm for UWB radar-based human 
detection in urban environments was presented in [19]. These 
technologies emit EM radiation to the environment, suffer 
from multi-path fading, and are mostly limited in range.  

A sonar system consists of an ultrasonic transmitter and 
receiver. It transmits a pulse to the medium of interest, and 
from its echoes, it can construct an image of the objects and 
activities in the medium. When a human walks, the motion of 
various components of the body including the head, torso, 
arms, legs, and feet produce an acoustic signature. A main 
degree of freedom in sonar systems is their pulse design. The 
two basic ultrasound pulses include Frequency Modulated 
(FM) wideband chirps, where the pulse starts with one 
frequency and changes gradually during the transmission to 
another frequency, and of Constant Frequency (CF) pulses 
[20]. The FM chirp enables high localization resolution and 
exploitation of properties of the bandwidth to detect different 
objects, while the CF pulse relies on detection of changes in 
the received frequency caused by the Doppler shift, and thus 
obtains information about the kinematics of objects in the 
medium. In some sonar systems, as well as in animal's bio-
sonar CF and FM pulses are used simultaneously [20]. Echo 
processing techniques used by frequency-modulated bats that 
exploit both  CF and FM pulses are shown in [21]. 

The Doppler modulations contain unique target features and 
thus can be used to characterize and classify human activity. A 
portable acoustic micro-Doppler system operating in a 40 kHz 
acoustic frequency range, has managed to identify different 
gait cycles based on the sonar signature [22]. Average speed 
of walking, torso velocity, walk cycle time, and peak leg 
velocity, can be extracted by the micro Doppler sonograms 
[23]. The performance of a range of classifiers and feature 
extraction algorithms were presented in [24]. Doppler 
signature can be used to distinguish between three human gait 
classes: one-arm swing, two-arms swing, and no-arms swing 
[25]. Reference [26] derived human kinematic features based 
on a model containing 12 body parts. Doppler based sonar 
system can assess the pattern of movement well, and can 
decompose the different body part movements, but cannot 
give precise information about the absolute location of 
different body parts in time and space due to their relatively 
long pulse duration and low correlation properties. 
Furthermore, due to its narrow band-width, it lacks the 
capability to distinguish between different static objects like 
stationary humans or walls. The absolute location of body 
parts and the ability to detect static humans is important for 
many applications in security and bio-medicine. While most 
existing Doppler based motion acquisition systems utilize a 
low frequency spectrum, there is much potential in 

exploitation of the richness of a wide spectrum [18]. A 
compressed chirp, like FM chirps, can give a precise 
localization of the object and contain spectral information in a 
large bandwidth that can be used to detect object structure and 
sometimes composition.  

This paper presents a new wide-band sonar system based on 
Linear FM (LFM) chirp for human activity classification. A 
Maximal Likelihood (ML) criterion to derive target 
displacements over time based on the echo properties of delay, 
intensity, and the correlation of the echoes over space and time 
was derived. For tracking the echoes and the acoustic objects 
they represent, an approximation of the Sequential ML 
estimator was derived based on echo parameters. The tracker 
and the association of acoustic object to groups (clutters) that 
represent real targets in the environments are performed in the 
space-time domain. In the space-time domains, the different 
reflections from objects are described by their location over 
time, which enable exploitation of the a-priori knowledge 
about the human subject target in a relatively simple manner. 
Furthermore, it enables direct extraction of kinematic features, 
like target velocity, and target body parts' displacement 
variability, that have clear physical meaning. As a classifier, a 
weighted two level nested k-Nearest Neighbor classifier was 
applied on only four kinematic features of the clusters. The 
technology was verified by a set of experiments with five 
subjects, 3 males, and two females, performing three different 
activity types of standing, walking, and swinging upper limbs 
in a typical indoor environment. 

The paper has three main contributions. A first contribution 
lies in advantages of the suggested technology in tracking 
human targets in indoor environment, in compare to the 
common optical technologies: noncontact (does not require 
attaching markers to different body parts), can work under any 
light conditions, and in the presence of smoke during a fire, or 
high humidity conditions in bathroom, unlike marker based 
optical technologies, and maintains the privacy of the subject 
in situations where is needed, like in bathroom, where the risk 
of falling is very high. A second contribution is in comparison 
to sonar systems based on Doppler technology. The wideband 
sonar, can give accurate information about human body parts 
location over time. This enables an enhanced classification of 
motion activity and eases the exploitation of the a-priori 
knowledge about the human subject target, compared to the 
commonly used frequency-time domains used in Doppler 
based methods.  The high bandwidth also enables using the 
enhanced correlation properties of the wide bandwidth signal 
to classify between human and non-human objects. The third 
contribution lies in the original processing techniques that 
were tailored to the high bandwidth pulse characteristics. This 
includes the tracking of multiple targets in the room with low 
complexity and minimal a-priory assumptions, extraction of 
informative feature set, and the classification methods. The 
processing methods exploit the high accuracy distance 
estimations, the enhanced correlation properties of the wide-
band signal, and integrate available a-priori knowledge about 
the human kinematics to the solution. The classification stage 
uses these features directly, and is divided to different 
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informative controllable stages that give maximal information 
about human kinematics.  

This paper is organized as follows. Section II describes the 
active sonar modeling. Section III, describes the human 
kinematic modeling. Section IV, describes the data analysis 
methods for tracking, associating the multi-paths, and 
classifying the subject activity. Section V describes the 
experimental set-up for evaluation of the new technology. In 
section VI the experimental results are given and discussed. 
Section VI I summarizes the results and suggests directions for 
future research. 

II. ACTIVE SONAR MODELING 

 An active sonar node is composed of an acoustic 
transmitted (speaker), an acoustic receiver (microphone), and 
a processing and storage unit. A pulse is transmitted into the 
medium where the object of interest is located. The sonar 
receiver receives acoustical reflections of the transmitted pulse 
from the medium. The reflections convey information about 
object location, structure, and sometimes composition [27]. 
First we define the signal and propagation model. To adopt the 
sonar to tracking subjects in an indoor environment we give 
the basic sonar design considerations. Then we define the 
echoes' properties we use in our data analysis.  

A. Sonar Signal and Propagation modeling 

A received echo in the sonar is characterized by attenuation 
and delay [28]. The received signal for multiple pulse 
transmission, at time instance t is: 

  ሺ ሻ    ∑     ( -  ) ( -  -    )     ሺ ሻ,        (1) 
where  (t) is a transmitted pulse implemented by a LFM 
(Linear FM) chirp with a pulse width   , a bandwidth  , and a 
a peak energy  ;   is the pulse index and   is the pulse 
repetition time, i.e., the interval between 2 pulses;      is the 
k’th echo delay in the  ’th pulse;      is its related 
attenuation factor which is commonly assumed constant 
during the observation time and is affected by geometrical 
factors and atmospheric attenuation factors, which depend on 
temperature, humidity and frequency;    is a gain factor 
determined by the sonar bearing angle and the sonar received 
and transmitted radiation pattern; and  (t) is an additive noise 
component. The noise includes thermal and system noise 
which can be modeled by white Gaussian processes, and 
distortion from non-linearity of the speaker membrane.  

The sonar system can be extended to a set of multiple 
sensor nodes. Each sonar node is capable of sensing motion 
features in one dimension (1-D). To assess motion in three 
dimensions (3-D) at least three senor nodes employed in 
different locations are needed [29]. Each object in the 
environment reflects the signal according to its cross-section. 
The cross section depends on the object’s material, surface, 
size, and on the transmitted pulse’s frequency range. Figure 1. 
shows a 1-D sonar system in a scene with a person, wall, and a 
chair. From each object there are different reflections of the 
transmitted wave sound, observed in the receiver.  

 

 
Fig 1. 1-D sonar based motion acquisition system in an indoor environment. 
The red circles represent the transmitted spherical wave, and the blue curves, 
the returning waves from the objects. 
 

  
Fig 2. Extraction of echoes from the continuous received signal. The figure in 
the bottom, includes two main echoes in the period of the m'th pulse 
repetition. Each section of the signal depicted between two red lines 
represents one row in   .  

The received signal in (1) is sampled every    seconds. The 
samples of   consecutive pulse repetitions are stored in an 
observation matrix    of size     , where         is the 
number of samples for each pulse repetition. A row of    
includes the received signal samples which represent the 
different echoes of one transmitted pulse (Fig. 2). These 
echoes are related to different reflection of the pulse at 
different locations in the medium and therefore are related to 
spatial dimension. The pulse repetition period is defined such 
that the last echo from the scanned space returns before the 
next sonar emission is emitted.  

 

B. Indoor Tracking Sonar Design Considerations 

The sonar system design for tracking human subject should 
be tailored to the target and environment. There are several 
fundamental parameters that are assessed in most sonar 
systems: target range, target location and orientation, target 
size, target velocity, and target spatial-temporal pattern [21]. 

The pulse energy and bandwidth need to be high enough to 
enable tracking the target in the indoor environment. The 
spatial resolution increases with frequency. Thus, the higher 
the frequencies are, the smaller objects will be detected. Bats 
use frequencies of up to 150 kHz, which enable them detecting 
objects of size of less than a centimeter from a distance of a 
meter [20]. A pulse composed of high frequencies, suffers 
from distortion of the signal due to increase attenuation in the 
high frequencies [21]. of the signal. For tracking human 
subjects' body parts, a spatial resolution of few square 
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centimeters will be adequate. Thus a high frequency of 60 
kHz, which represent a wavelenght of around a centmieter, 
will be adequate for tracking human subject in an indoor 
enviroement, and yet will not suffer from signal distorrtion 
due to atteenuation. For the lower freqeucny we can choose 
freqency of over 20 kHz, which is the upper hearing range of 
humans. With pulse bandwidth between 20-60 kHz, body 
parts and large scatterers in the medium, like walls, will reflect 
most of the transmitted pulse with minimal distortion. 
Reflections from small body parts with surfaces of a few 
centimeters, or a textured surface with different distances from 
the sonar will have a varying pattern, which can be 
significantly different from wide reflectors like walls [30].  

The maximum range at which a target can be located has to 
guarantee that the leading edge of the received backscatter 
from that target is received before transmission begins for the 
next pulse. This range is called maximum unambiguous range 
and is given by:      ሺ    ሻ ,                    (2) 

where  , is the speed of sound and is around 343 m/s.  
From the unambiguous range, the maximal Pulse Repetition 

Frequency (PRF) can be obtained,   ሺ       ሻ. For 
instance, for indoor environment with distances of up to 4 
meters, and of pulse duration of around 2.5 ms, the maximal 
PRF is 48 Hz. The minimal PRF, is obtained from the minimal 
range, which is determined mainly by the transmission delay, 
and in case of short FM chirp, is usually very low.  

The Doppler shift is proportional to the target velocity 
relative to the sonar, and inverse proportional to the 
transmission wavelength. A LFM pulse is tolerant to Doppler 
shift of up to 10 percent of its bandwidth,      [31]. For 
example, a 40 KHz Linear FM chirp would be tolerant to 
Doppler shift of up to 4 kHz, which is significantly more than 
the typical Doppler shift range, which is up to 1 kHz. 
Therefore, for human detection, the Doppler effect of the LFM 
based sonar can be neglected. 

The achievable range resolution of a sonar system depends 
on the range of the transmission bandwidth [31], and is for 
example, for a 40 kHz transmission, in the range of few 
centimeters. Therefore, for tracking coarse human movements, 
a bandwidth around 40 kHz, can be adequate.  

III.  HUMAN MOVEMENT MODELING 

A human body can be described as a combination of body 
parts (BPs). While the subject performs different kind of 
activities, each of his/her body parts has a typical kinematic 
pattern, which can be captured by the body part displacement 
over time [13]. The kinematic features of the human can be 
derived from the group of discrete numbers of body part 
displacements [17]. Each body part can be divided into a 
relatively static component (e.g. torso, head), and to dynamic 
(e.g. upper and lower limbs’ movement while walking) 
components. The displacement of the l’th body part in a 
Cartesian coordinate axis, in reference to the sonar location at 
instance time t is:     ሺ ሻ       ሺ ሻ       ሺ ሻ                  (3)  

where      ሺ ሻ is the l’th BP’s absolute displacement 
component of very slow movements at instance time t, ሺ    ሺ ሻ     ሺ ሻ     ሺ ሻሻ, which reflects relatively static 
displacements with low velocity and standard deviation, 
usually with frequency content of less than 0.5 Hz, e.g. torso 
movement;       is the l’th echoes' absolute displacement 
component of higher velocities and standard deviation at 
instance time t, ሺ    ሺ ሻ     ሺ ሻ     ሺ ሻሻ,  with frequency 
content in range of 0.5-3 Hz, and is related to motion of 
different body parts like legs [32] and arms during performing 
daily life activities like lifting a bag, or walking [33] 

It can be more informative to use the displacements relative 
to the torso, instead of the absolute body part displacement. In 
walking, where the whole body moves, some of the body 
parts, like the head, will have a relatively constant 
displacement from the torso, while the upper and lower limbs, 
will have a periodic displacement pattern. 

IV.  DATA ANALYSIS  

The echoes' properties can be used to assess the human 
kinematics features by using advanced signal processing 
methods. The analysis is applied for one sensor in a single 
axis, which can be described as the radial axis (from the 
microphone outside).  

Human activity classification in our system can be divided 
into four main stages. In the first stage, properties of received 
echoes like range, intensity and correlations are used to detect 
acoustic objects and track their location over time using a 
variant of sequential MLE object tracking [34]. These acoustic 
objects, referred in the paper just as objects, are sub-objects of 
a target, or of a real object in the medium. They are related to 
one or more echoes that shares similar echo properties and are  

 

 
Fig 3. Data processing flow consists of three main phases: tracking  objects 
(acoustic), associating these objects to groups that represent targets or real 
objects, and in a final stage, classifying the human activity type and level. At 
each phase, a typical prior knowledge is used: at the acoustic object tracking 
stage, the continuity of the echoes; at the grouping phase, the properties of 
target's dimensions, velocity, and standard deviation of  its body parts in space 
and time; and at the classification phase, the kinematic features, and the 
number of body parts are used 
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reflected from the same location [35]. In the second stage, the 
objects (acoustic) are mapped to different groups (clusters) 
that represent the real target objects. In the third stage, features 
of the different object groups, like group average velocity, are 
derived. In the fourth stage, the features are used to distinguish 
between human and non-human object groups, and to estimate 
the activity level and activity type of object groups that relate 
to humans. Figure 3 shows the data processing flow.  
 

A. Acoustic Objects Detection and Tracking 

All acoustic objects' (referred as objects, in compare to 
target or real object) displacements in the medium over the 
observation time are estimated by using Multi-Target 
Dynamic Sequential MLE Tracking technique [36], which is  
a variant of a Sequential MLE Tracking technique. Before the 
tracking, a pre-processing stage on the raw data is performed, 
and an echo processing stage in which the echoes' properties 
of range, intensity and correlations, are estimated.  
 
Pre-processing stage 

Pre-processing of the measurements include a Band Pass 
Filter (BPF), match-filtering, frame synchronization, and echo 
selection. A BPF on the received samples removes frequencies 
that are out of the transmission band, and are related to 
interferers and other noise sources. The match-filtering 
operation detects the received echoes delays from The 
observation matrix   . The matched filtered outputs during the 
observation time are stored in the matrix   of size     . To 
estimate the set of delays in the m'th frame, {    }, a peak 
detection is used on the on the match filter output. The delays 
are relative to the start of the frame. Frame synchronization is 
performed to estimate the start of frame.  To reduce the 
computational resources, and exclude some of the noise, high 
Signal to Noise Ratio (SNR) echoes are selected using a 
Detection Threshold (DT), which is related to the size of the 
detected object and the noise tolerance of the system.  

 
Echoes' properties Extraction  

The basic echoes' properties of delay, intensity, and echoes' 
spatial-temporal pattern can be used to detect and classify the 
different targets (objects) of interest.  

The distance between the k'th object and the sonar system at 
instance time m, can be denoted by    , and is the round trip 
time divided by a factor of two. Object position can be 
obtained by the range, azimuth and elevation angles from the 
sonar to the object, and by using multiple sonar sensors 
located at different locations, using statistical or geometrical 
methods. In Doppler based systems object velocity can be 
assessed by the measure of Doppler shift. In a wideband sonar 
with a high Signal to Noise Ratio (SNR), the velocity can be 
estimated by deviation of the object location estimations over 
time [31].  

Object dimensions can be estimated by analysis of the 
number of echoes reflected from an object, their spatial 
spread, and by their energy [21]. One indication about object’s 
dimension is its related echoes' intensity [37]. The intensity is 

normalized by a factor of the range, to enable tracking objects 
in different locations. The normalized intensity of the k'th 
acoustic object, at instance time m, is given by:           √ (   )  ,                      (4) 

where     , √ , and   , are the channel attenuation, peak 
amplitude that is the square root of the peak energy, and the 
gain factor, as defined in (1);   is the echoe index that relates 
to the k'th acoustic object, and    is a normalization factor, 
which for a 2D object is around 2 [31]. 

The spatial-temporal correlations of the different received 
echoes indicate on the object characteristics. In particular, it 
indicates on the feasibility of the spatial-temporal pattern to be 
used for association of different echoes to different objects. 
The spatial temporal correlations can be split to spatial 
correlation, of echoes reflected from different objects in the 
same time instance, and to temporal correlations, of echoes 
related to the same objects over consecutive time instances. 
Let us denote      , and        , as the spatial correlation 
coefficient between the k'th and the l 'th echoes at time instance 
m, and the temporal correlation coefficient of the echoes that 
are related to the k'th object at time instance m and m+1. 
 
Tracking Criterion 

The Maximum Likelihood (ML) criterion to extract from 
the match filter output   the set of L body part displacements 
that belong to a human subject is:  ̂           {    },                (5) 
where                   is a matrix of the L body part 
displacements in 1-D over observation time M; and  ሺ ሻ is a 
probability distribution function.  

The received signal of one pulse repetition includes 
different echoes with a profile that change over time as the 
target and other objects in the medium move. Since the 
channel and target distribution functions are not linear, solving 
the non-linear likelihood function in (5) for multiple objects is 
cumbersome. The solution for two targets is given as a 
function of posterior likelihood probability densities of each 
target, and target detection probability [38]. The posterior 
likelihood probability densities are hard to estimate, depend on 
many parameters, and require extensive a-priori knowledge, 
which is commonly not fully available in targets like humans 
that change their position, activity, and shape continuously. 

A simplified solution to (5) can be obtained by splitting the 
solution into two stages. In a first stage, all reflections from 
objects in the medium, including reflections from different 
targets like human and other scatterers like walls or chairs, are 
tracked using an acoustic tracking algorithm. The algorithm 
exploit constraints that reflect the difference in different 
reflections' characteristics, like location, and correlation, and 
the continuity of motion in space and time. In a second stage, 
the different acoustic objects are mapped to different groups 
that relate to the different targets. At this stage, an a-priori 
knowledge about the targets, in space-time domains can be 
used, instead of the cumbersome a-priori distribution functions 
that is needed for solving the general MLE.  
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For the acoustic object tracking, a constrained MLE 
criterion can be defined as:  ̂          {   },                          (6)                                                                                                   

where               is the set of   objects' 
displacements vectors over time in the medium that are 
associated with   groups (one group can be the target human),    , and    ,    , and    , and       and        , are the l'th and 
k'th objects displacement, intensity, and the spatial and 
temporal correlation coefficient as defined above. The 
coefficients            ,             are the corresponding spatial 
and temporal thresholds on the parameters that depend on the 
medium and on the pulse properties, and can be determined 
experimentally.  

The constraints are based on spatio-temporal correlations of 
the different echoes, and can be separated to temporal 
constraints between successive pulse repetitions, and spatial 
constraints between objects in different ranges. Echoes close 
in time and space are more likely to be related to the same 
object, and to have close delays, intensity, and to have more 
correlation to each other. In case the constraints are tailored 
only to a specific to the target, the solution to (6) will coincide 
with the solution to (5). The specific target constraints can be 
based on the a-priori knowledge about a target [39], like target 
size or shape. Still, these constraints are not always available, 
in particular when tracking dynamic scenes with targets that 
change their shape. 
 
Sequential MLE approximation 

The tracking problem (6) can be solved using the  
sequential MLE [34] for all (acoustic) objects in the medium. 
This can be implemented with a Viterbi algorithm [40] with a 
distance metric error that maximizes the constrained 
probability function in (6).  

A trellis diagram is used to represent the different objects’ 
possible locations over time. For M discrete locations, a state 
at time interval m,     and    , represent the location of the 
k'th and l 'th objects. A path in the diagram is a transition 
between states at consecutive discrete time intervals. Each 
possible transition represents a possible motion of the object 
from one position to another. The transition between the states 
depends on the PRF, and on the motion. Slow motion with 
high PRF will have fewer transitions in the trellis diagram. 
Each "legal" transition between states at time instance m, can 
be defined as a branch with a branch metric       ,which is a 
function of the similarity between consecutive states. The 
branch matrix between objects k, and l, at instance time m can 
be defined similar to [41], to maximize the likelihood ratio of:        ሺ     ሻ ሺ     ሻ,                           (7) 

This branch metric is a function of the distance between two 
states, the pattern of the echo, and the echo intensity [34]. The 
branch metric can be normalized to values between 0 and 1 to 
represent a probability function. The branch metric between 

objects k, and l at time instance m, can be approximated by the 
following analytical function:                (     ) (     ) 

,             (8) 

where,                              ሺ         ሻ    ሺ         ሻ,      , are 

measures of distance, intensity, and cross-correlation between 
the k'th and the l 'th objects at time instance m, and      , are 
constants that are determined experimentally and reflect the 
reliability and significance of the distance, intensity, and 
correlation measures to the detection probability respectively. 
The metric in (8), approximate the metric in (7), and maintain 
the asymptotic properties of the optimal solution of (7) [42]. 

An object i'th path metric is the sum of the branch metrics 
that are related to the objects in the time interval  :  

     ∑                                   (9) 
 The time interval is called a constraint length and must be 

big enough to reflect enough statistics to detect the object. But 
too long constraint length, will result in accumulation of 
estimation errors, and will affect the tracking of fast 
movements. An object j at instance time m, is selected to be 
related to an object i, according to the following criterion [15]:  ̂          ሺ            ሻ.                       (10) 

To enable flexibility of the tracking scheme and for tracking 
dynamic objects that can enter or exit the range of the sonar 
and change their object properties in time and space, the 
implementation of the solution to (6) in the trellis diagram 
includes object creation and deletion, splitting from one object 
to two objects, and merging with existing one.  

In case a new object enters the sonar coverage range, a 
creation process of a new object will start. If there is no other 
object in the trellis diagram with a close enough metric to the 
new one, and the object exists over certain threshold duration, 
which is usually in range of the constraint length, then the a 
new object is created in the diagram. In case an object leaves 
the sonar coverage range, or gets too far from the sonar and 
the intensity goes below the detection threshold, the object 
path is cut in the trellis diagram. Objects can be split one from 
another. For example, in case of a movement of a body part 
away from the torso, like lifting an arm, where the object 
exceeds the constraint length, a new object that relates to the 
torso will be created. In the trellis diagram, the new object is 
seen as a split of the branch metric of the previous object. In 
case an object, like an arm, returns back to the body, two or 
more reflections from one object can be merged. A multi-path 
combining algorithm can be then applied. A post processing 
stage, to filter-out discontinuities and mitigate over missing 
estimations of an object due to noise, or scatterers similar, is 
performed.  

Figure 4 shows the trellis diagram during tracking of three 
objects: A, B and C. In Figure 4.a, the states are the set of the 
distances between the object and the sonar of the detected 
echoes marked by ellipses. The green color ellipses are states 
that are not chosen. The pink ones are the location of the three 
objects over time. The arrows in Figure 4.b represent the 
chosen branch metric magnitudes. The sum of branch matrices 
with the lowest value over the constraint length is chosen and  



Sensors-8562-2013 7 

 
Fig 4. A trellis diagram that implement the tracking algorithm in (10) for three 
objects: A, B, and C. In panel a, the states are the set of the distances between 
the object and the sonar of the detected echoes marked by ellipses. The arrows 
in panel b represent the chosen branch metric magnitude corresponding to the 
states in panel a. The sum of branch matrices with the lowest value over the 
constraint length (4 pulse repetitions in the example) is chosen and maximizes 
the ML probability criterion. Object A, represents an object (optical) of a 
static body. The algorithm is capable of mitigating for misdetection of object 
C (shown in blue color) by interpolation, and to dynamically delete and create 
new objects without prior assumptions, like the creation of object B.   
 
maximizes the ML probability criterion in (10). Object A is a 
static object. Object B will be created if it lasts for more than a 
pre-determined time, in the constraint length. Misdetection in 
object C, marked by a light blue color, is mitigated by 
interpolation, and becomes part of object C path over space 
and time. 

B. Grouping to real Objects  

The different objects (optical) are mapped to groups in a 
segmentation process, in which objects (optical) are assigned 
to different groups (clusters) that statistically relate to real 
objects (targets) in the environment [35]. The assigned groups 
and their related object properties are used for targets' 
classification.  

Many segmentation and grouping processes are supervised, 
and a training set is needed. Methods without or with minimal 
training usually require a-priori assumptions [43]. Reference 
[43] carry out a detection phase using an unsupervised Markov 
random field (MRF) model and assuming a-priori spatial 
information on the physical size and geometric signature of 
the objects.  

For tracking human subjects, after the stage of tracking the 
objects (acoustic), a-priory assumptions about the subject 
features can be utilized in a simple manner, compared to the 
common assumptions about the a-prior distribution of the 
reflections from the body [43]. Such assumptions can include 
the subject body size, the maximum spread of his body parts, 
and his kinematic properties, like trajectory velocity. This a-
priori knowledge can be translated to constraints on echoes 
intensity, correlation, and spatial-temporal distribution on the 
space-time diagram.  

Let us define     as object mapping index vector at 
instance time m in the length of number of objects, K. Let us 
denote by   , the set of objects properties that relate to K 
objects. An object k is mapped to the j'th group   , if the 
output of the mapping is      ሺ ሻ   . A criterion to the 

grouping of multiple objects can be defined as:  ̂             {      }          (11) 

The criterion in (11) applies that an object will be related to 
a group, if its probability is higher than the one that the object 
is related to the other group. Solution to the criterion in (11) is 
complex [41]. A simpler criterion can be to associate to each 
target its object separately based on it’s a-priori knowledge, 
and then, in a later processing stage, exclude estimation noise 
from the targets estimations.  

The set of indexes of objects mapped to the j 'th group    at 
instance time m is denoted by     . A MLE criterion for 

mapping objects to the j'th group can be defined as:  ̂            {       }               (12) 

s.t. ሺ  ሻ ,                 

where  ̂  is the set of objects properties related to the 
approximated displacement vector,  ̂  , and  ሺ  ሻ is the set of 
attributes of the j 'th target, which are  assumed to be known a-
priori. 

To solve (12) with the constraint the probability function of 
the object properties can be used [44]. The probability 
function of the targets is not deterministic, and hard to 
evaluate. A simpler approach, can search in the space-time 
defined by the trellis, set of objects in the area defined by the 
target size [43]. The area boundaries can be set around the 
center location of the probability, which is usually denser or 
with higher intensity. The central object, which is usually 
more consistent and strong over time, is denoted as the main 
object, and the other objects in the group, as sub-objects.  

A simple realization of the algorithm can first detect a main 
object along a moving window of size  , and in boundaries 
determined by the maximal spread of body parts in the space-
time diagram,   . The main object displacement can be 
chosen according to the maximal intensity, in a recursive 
manner, according to:          { ሺ  ሻ}                      

          (13) 

where  ሺ  ሻ is matrix of intensities of the K objects.  
The criterion in (13) can be extended to include other 

attributes of the constraints  ሺ  ሻ in (12). Such attributes can 
be group velocity, constituency over time, and distribution of 
the target group objects [44]. 

After determination of the main object, all other objects in 
the space-time are assigned as sub-objects. As a post 
processing stage, the groups can be merged or split based on 
MLE similarity measure of the different features of the 
groups. This can also enable merging groups that correspond 
to more than one different acoustic objects' groups, which are 
reflected from massive reflectors like walls in NLOS 
environment. For example, reflection from the floor of the 
subject echoes.  

For determination of human motion kinematics, the objects 
can be divided to additional categories, according to their size, 
location, and kinematics statistics. A fundamental category is 
of dynamic and static objects. Dynamic objects are sub-objects 
that fluctuates more than a certain threshold, usually around  
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Fig 5. Determination of object type in a group. The strongest reflection is 
usually marked as the main object in a group, and the other are called sub 
objects. The sub-objects are divided to static and dynamic ones, and can be 
used to form a feature set. 

 
the main body of the group, e.g. lower and upper limbs are 
dynamic parts, while walking. Static objects are sub-objects 
that are relatively static in relation to the main-body (torso), 
e.g. head. A threshold on the standard deviation of the object 
location from the main object location can be used to 
determine if an object is dynamic or static.  

For example, three objects of torso, head, arms, and legs in 
the human scheme in Figure 5, will be part of one group, that 
relate to human. The torso will be the main object and the 
head and hand will be sub objects. The arms and legs will be 
dynamic objects, and the torso, and head, which do not move 
relative to the main body, will be considered as static objects. 

Similar to the object tracking stage, a post processing is 
performed on the results of the grouping. It includes exclusion 
of objects that appears for only short instance time, or its 
intensity is below a threshold, by filtering, that apply the 
range, intensity and correlation group constraints. A low pass 
filtering can mitigate over inaccuracies in the interpolation and 
merging operations.  
 

C. Features' Extraction  

To classify groups related to humans, as opposed to groups 
related to non-human objects, significant features should be 
extracted. This enables tracking only the desired object 
(human), and excludes clutters, like walls, based on the 
statistical characteristics. The second goal is to extract features 
that can be used to classify activity level and type. The 
features can be divided into kinematic features that relate to 
the distribution of displacement in the group, and to more 
static features that are based on correlation properties [45]. 

The dynamic features at instance time m can be: 1) the 
average velocity of the main object,     ; 2) average standard 
deviation of the group,     ; or 3) number of dynamic objects 
in the group,     , over a time window.  

Static features depend more on the object’s size and pattern. 
In radar systems, where a large portion of the radiation can 
penetrate through the body, the reflection can be changed in 
relation to tissue composition [18]. In sonar systems, the 
reflection is mostly from the body surface [27] and therefore, 
human detection can be obtained by its distinct body surface 
structure. These features can be based on echoes' pulse 
autocorrelation properties. For example,  ̅       , mean and 
standard deviation of the auto-correlation function of the main 
object's echoes over a temporal window, can be used to 

distinguish between different objects, in particular between 
echoes that return from a human and ones that are reflected 
from other objects. 

D. Human Motion Classification 

Human motion classification is related to its sonar 
signature. Different objects, different people, and people doing 
different activity types, have different sonar signatures that 
characterize their body properties and kinematics [45] . In 
addition, the kinematic features that are unique to humans 
[45], can be aggregated [32]. To classify human activity level 
or activity type, kinematic features of the body that form the 
sonar signature need to be derived. The classification can be 
obtained by using the group features together with the features 
of each object in the group like object velocity, range, 
dimensions, and pattern of change in time and space [46]. The 
classification can be formed in one stage or different stages. 
Dividing the classification process into multiple stages makes 
the analysis more observable and helps in controlling its 
parameters.  
 
Activity level 

The measure of human activity level is important indication 
for patient monitoring. The features               , of group 
velocity, sub-objects standard deviation, and number of 
dynamic objects, respectively, can be used to assess physical 
activity. The velocity can be an indication if the human walks. 
When a human is doing an action that involves the arm and 
hands movements, while staying in one location, dynamic 
body parts will change their location, while the main body will 
remain in one place. A simple classifier can be linear sum of 
the features, where each feature is weighted in the summation 
according to its significance to the desired goal using a feature 
selection algorithm [12]. 
 
Activity type 

To classify simple activity types, the dynamic features of an 
average window can be used [32]. These features will enable 
classifying between fundamental activity types like standing, 
walking, and doing physical activity that include movement of 
body parts like hands or legs. To classify more complex 
activity types like sitting or lifting a bag, the classifier must 
use a short observation window and a state diagram over time. 
More features should be added, including body part size and 
acceleration. A wide enough training set should be used. Since 
the sonar system can also detect and classify other static or 
dynamic objects in the room the context information can be 
added. For instance, if the human subject approaches an area 
that is known to be a library, and then lifts his hands, we can 
assume that the subject is taking a book from a shelf. 

E. Classifier implementation 

A simple and effective classifier commonly used in sonar 
systems is the k-Nearest Neighbor (k-NN) classifier [24]. An 
object is classified by a majority vote of its neighbors in the 
feature space, with the object being assigned to the class most 
common amongst its k nearest neighbors in the feature space 

http://en.wikipedia.org/wiki/Feature_space
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(k is a positive integer, typically small). The basic high 
dimension feature space k-NN classification suffers from 
over-sensitivity problems due to irrelevant and noisy features. 
The k-NN classification accuracy can be improved by 
selecting relevant features, assigning a weight to each one 
[47], combining multiple classifiers using decision trees, and 
by selecting the best k value in a dynamic way [48] . 

A k-NN classifier with 2-level decision trees, optimal 
feature weighting and k values can therefore be a good 
compromise between efficiency and performance. One 
implementation can use a first decision level classifier that 
distinguishes between human and non-human groups. Second 
decision level classifiers can then be used to classify activity 
types and levels. This implementation can suffer from trailing 
classification error from the first level, but can minimize these 
errors by a learning algorithm over time. 

Another implementation suitable for environments where 
the non-human objects are static includes two decision level 
classifiers. The first classification can be between static or 
dynamic objects, using a set of features that are related to 
motion kinematics. The second level classification can be 
divided to two classifiers: 1) classification of the static object 
between non-human object and humans; 2) classification of 
the dynamic objects by different activity types and levels 
using the dynamic features. 

For the dynamic classifier, motion kinematic features like 
main body velocity, number of dynamic body parts, and the 
average standard deviation of the sub-object in the group can 
be used. For the static classifier, correlation measurements can 
be used to distinguished between static object and humans as 
they have different reflection surfaces and properties [49]. The 
output of the static classifier can be feedback to the activity 
classifier, decrease trailing error, and include a static position 
of the human in the activity classification, and thus enhance 
the overall classification accuracy. The features can be 
weighted at each level according to their relevancy to the 
specific classification, and the k value can be higher in the first 
level, and lower in the second decision level in order to reduce 
trailing error. The decision tree, when applied for short time 
instances, and with a state diagram, can be applied to classify 
more settle activity types, like lifting a bag. Figure 6 describes 
the decision tree for the classifier.  

 
Fig 6. Two level decision tree k-NN classifier for activity type and activity 
level estimation. The non-human objects are assumed to be static. The static 
positions of the human can be aggregated by the third classifier, in case 
complex activities are classified. 

 

V. EXPERIMENTAL SETUP 

The experimental setup is designed to produce a first order 
feasibility test for the technology and to evaluate the system’s 
performance for classification of different fundamental 
activity types. The experimental setup includes a sonar 
system, a reference video system, and a processing unit. The 
experiment was performed in a 4x3x2.5 m3 non-acoustic 
room, in Tel-Aviv University, in Tel-Aviv, Israel.  

The sonar system is shown in Figure 7. The processing unit 
was a laptop (Dell, Vostro), and the reference video system 
was a webcam (Logitech, HD 720p) with 30 frames per 
second. The sonar system was composed of an ultrasonic 
dynamic transmitter (speakerphone) and receiver (Avisoft 
INC), and a synchronization cable. The speaker and the 
microphone were connected through a D\A converter (Avisoft 
INC, UltraSoundGate Player 116) and an A\D converter 
(Avisoft INC, UltraSoundGate 116Hm) to the laptop. The 
sampling receiver rate was 500 kHz. Both ultrasonic 
transmitter and receiver were directional, with beam width of 
around 30 degrees [50]. Frequency responses and beams of the 
speaker and microphones can be found in [50]. The 
directionality of the sonar spatially filtered clutters and scenes 
that were out of the area of observation. The pulse was a linear 
upsweep FM chirp with frequency range that moved from 20 
to 60, kHz, which resides in the frequency range defined in 
II.C. This frequency range is above human hearing, enables 
range resolution in scale of a centimeter, and has a neglected 
Doppler shift. The chirp was windowed by a Hanning window 
to avoid clipping. The peak and Root Mean Square  (rms) 
values of the transmitted pulse were 102, and 92.5 dB SPL (at 
1 meter), respectively. These values were adequate for 
tracking targets larger than of a few square centimeters, which 
is the size of a typical body part. The pulse repetition rate was 
40 Hz, which was assumed to be adequate for tracking normal 
motion patterns. The experimental setup is shown in Figure 8.  

For first order feasibility of the tracking and grouping 
algorithm described in IV.A, and IV.B, 8 different 
experiments with multiple people performing different activity 
types were performed in an indoor environment. In each 
experiment, the position of one or two subjects was estimated 
along 8 seconds. The human subjects were located inside the 
range captured by the sonar system, and were either standing, 
walking, or standing with arbitrary arm swing. A reference 
video system was activated simultaneously with the sonar 
system. The video frames were synchronized to the sonar 
transmissions by synchronization pulse, at start of each 
recording. Snap shots of the different experiment sets as 
captured by the video reference system are shown in Figure 9. 

For the evaluation of the classification algorithm described 
in IV.C and IV.D, a set of 150 experiments with three 
different activity types was performed on five different people 
(3 males, 2 females) with 10 repeats for each of the three 
activity types. In each experiment a human located inside the 
range captured by the sonar system performed different 
activity types for 8 seconds: undirected walking, standing still 
in different positions, and standing with arbitrary hand swing. 
These activity types were chosen because they are 

http://en.wikipedia.org/wiki/Integer


Sensors-8562-2013 10 

fundamental in human motion. In addition, these activity types 
can be used to assess also activity level. For each experiment, 
the sonar system was activated simultaneously with the video 
reference system.  

The data analysis methods in section IV were applied to the 
raw data for the tracking and classification experiments. From 
the experiments, 70 percent of the data (105 experiments) 
were used as a training set, and the other 30 percent (45 
experiments), were used as a test set. To increase classification 
reliability, the subsets of training and test sets were resampled 
randomly 10 times [51]. Artifacts were removed from the 
training set for each feature by using a median filter. Each 
experiment included only one known activity: walking, 
standing, or standing with swinging hand(s). The different 
groups were tagged according to different classes according to 
the video reference: non-human static targets and subject 
humans standing, walking or swinging hands.  These tags 
were used by the classifiers for the training set.  

Three k-NN classifiers were used in a similar manner to the 
one shown in Figure 5. For the first level classifier (between 
static and dynamic targets), the features of the human related 
group (assumed as the i 'th group) were the average group 
standard deviation,    , and the average main body velocity    . The velocity had double weight compared to the standard 
deviation. Artifacts were removed using a median filter with 
two standard deviations, and the value of k was 5. This high k 
value was chosen to produce a coarse clustering to reduce 
trailing errors. For the second human detection classifier, the 
features were group average standard deviation,     , and 
average and standard deviation of main body correlation over 
time,  ̅       . The median filter standard deviation was 1.1, 
and the k value was 2, to produce fine classification between 
static targets like walls and humans. For the human activity 
classifier, the features were in addition to the group average 
standard deviation and velocity, along with the average 
number of dynamic objects,    . The classifier artifact filter 
was finer than the first classifier with threshold of 1.4 standard 
deviation, and the k value was 2. Table 1 summarizes the k-
NN classifier configuration. 

VI.  RESULTS AND DISCUSSION 

A. Pre-Processing 

The received signal in frequency-time domains for one 
pulse repetition is shown in the spectrogram in Figure 10. The 
experiment includes a human subject standing at a distance of 
around 1.5 meters from the sonar, and a wall in the 
background. The signal bandwidth is between 20-60 kHz, and 
the peak frequency is in the middle. The first echo is the one 

TABLE I 
CLASSIFIER CONFIGURATION 

Classifier type Features k Artifact filter 
(standard deviation) 

Dynamic/Static            5 2 

Non human static object 
/Human Standing 

      ̅        2 1.1 

Swinging Hands/walking             2 1.4 

 
Fig. 7. The sonar system. It is composed of an ultrasonic speakerphone, the 
A/D and D/A converters, a cable to synchronize the transmission and 
reception, and a computer which functions as a processing unit.   

 
Fig. 8. Experimental setup which include a subject perfoming an activity, and 
s sonar system. The range between the subject and the sonar vary from 0.5 
meter to 3 meters. 
 

 
(a)           (b) 

  
(c)           (d) 

 
(e)           (f) 

 
(g)           (h) 

Fig. 9. Different human tracking experiment sets as captured by the reference 
video system. Figure 9.a, 9.b, and 9.c, demonstrate examples of a human 
subject standing, swinging upper limbs, and walking towards the sonar system 
and away, respectively. In experiments described in Figures 9.d, and 9.e, 9.f, 
and 9.g, and 9.h, two people are standing, one swinging hands and one subject 
standing still; two people are walking to and from the sonar system; a subject 
stands in front of a chair; a subject stands behind a chair swinging his hands, 
and a subject walks around a chair, respectively. 
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received at the moment of transmission directly from the 
speaker to the microphone, the second one, is composed 
mainly of two echoes related to the subject, and the third one 
to the echoes from the wall. The echoes from the wall are 
more spread out, due to the relatively large reflection surface.  

 The observation matrix was calculated at the beginning of 
each pulse repetition. Then, the received samples were match-
filtered with the transmitted pulse shape. The results were 
threshold to exclude reflections from small objects and noise. 
Figure 11 shows the echoes' auto-correlation matrixes over 
time for the walking subject in Figure 9.c. The fluctuating 
stronger echo returns from the walking subject (Figure 9.a), 
and the later echoes return from the walls, and possibly from 
indirect reflections from other objects in the room (Figure 
9.b). The wall echoes change less over time, and hence are 
correlated. The wall mean and standard deviation values were 
0.709, and 0.116, respectively, compared to 0.617, and 0.1211, 
and one of the upper echoes related to the wall (Figure 9.b). 
The wall echoes change less over time, and hence are 
correlated. The wall mean and standard deviation values were 
0.709, and 0.116, respectively, compared to 0.617, and 0.1211, 
of the human. The difference can be explained by the 
continuous change in the effective reflective surface, in the 
beam attenuation in different ranges and frequencies, and the 
cross section over time, caused by change in the subject's body 
parts’ location and orientation while walking.  

The metric parameter values      , were chosen 
empirically in a way that minimizes the tracking error over a 
range of train experiments. The values were found to be                   . These values reflect the higher 
importance of the distance and the intensity, while the 
correlation value is less distinctive, and therefore has a low 
value. The correlation property, even with its relatively small 
weight, filters noise that has a very little correlation with the 
transmitted pulses.  

 
Fig. 10. Signal spectrogram for m'th pulse repetition for the experiment 
described in (Figure 13.a). The first signal is of the transmission, the second 
echo group is from the human, the third is from the wall. 

 
(a)                                               (b)  

Fig. 11. Auto-correlation matrix over time of the main echoes of the wall 
(Figure 11.a), and the walking subject (Figure 11.b) for the experiment 
described in Figure 9.c. The wall is more correlated with a lower variance. 

B. Object Tracking and Grouping 

Figure 12 shows the processing stages of the object 
detection, tracking, and grouping algorithm as described in 
section IV.A. and IV.B in the space-time domains of the 
experiment shown in Figure 9.c. Figure 12.a shows the result 
of the match filter after the thresholding operation. The late 
echoes are related to the wall, and the two fluctuating ones are 
most likely the walking subject’s body parts. According to the 
differential distance of around 30 cm, using the video 
reference, and geometric considerations, the sub-object that is 
nearer the sonar is the torso and the farther one is the upper 
body, near the head. Figure 12.b shows the results of the 
sequential MLE object tracking with more than 20 different 
objects. Figure 12.c shows the last stage in object tracking of 
post processing, in which missing estimations are mitigated 
for each object by interpolation. The next stage is the grouping 
performed on the objects in the space-time diagram. First, the 
main object is detected in the space-time diagram according to 
intensity and consistency over time according to (13). Then its 
related sub-objects, with lower intensity, are chosen. The 
results of grouping are shown in Figure 12.d, where each 
group has a different color.  

Figure 12.e shows the results after a group merging and 
splitting algorithm based on similarity of the different group 
features. There are 4 main groups, where each group is 
marked with a different color. The blue group, with its 
continuously moving displacements, is related to the subject. 
The other three groups, marked by black, green, and red, are 
associated with static objects from the scene. The black group 
is associated with a nearby static reflector, probably from a 
surface near the sonar system, like the sonar itself. The green 
group can be associated with direct reflection from the wall, 
and the red group from wall sides, or from indirect reflections 
from the wall via the floor. Red and green are separated 
groups, since the criterion for grouping was based on detection 
of human motion and use the a-priori knowledge of human 
body parts’ maximal span. When using only a-priori 
assumption about human target size, other groups will be 
"projected" to human groups, at least in the sense of group 
spatial dimensions. Note that the objects in the wall groups, 
mainly the red group, fluctuate over space and time. This can 
be explained by estimation errors, and by the effect of non-
stationary human movement.  

To derive the group features, the objects in each group are 
sorted into dynamic or static objects according to their 
standard deviation from the main object as defined in section 
IV.B.  Figure 12.f shows the results of this process: main body 
(red) and its related static (black) and dynamic (purple) 
objects, which are in case of a human, his torso and body-
parts.  

Figure 13 shows the final grouping results for the set of 
experiments shown in Figure 9. The static walls in the 
background are well estimated in all experiments. There is 
more than one group that is related to the wall. This is due to 
the wide reflection surface of the wall, and the a-priory size of 
target which was defined as 1.2 meters to reflect the span of a 
subject’s limbs, as this method is dedicated to tracking people. 
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In our method, there can be, multiple groups associated with a 
target. Applying in future, multi-target target approach can 
enable association of only one group to a target.  

The main difference between standing still and swinging 
arms (Figures 13.a, and 13.b) is of the larger spread out of 
body parts that relate to the partial upper limb movement 
captured by the sonar. (The human group is colored blue; the 
walls are green and red). The change in the arm and hand 
orientation and effective surface, and in case of very rapid 
movement, insufficient pulse repetition rate has caused 
occasional discontinuity in location estimations over time. The 
experiment of walking without moving the upper limbs 
(Figure 13.c) shows two distinct body parts (human in red 
color). Comparing the results to the video reference shows that 
the main body part is related to the torso, and the upper body 
part is related to the reflections from near the head. In the 
experiment with two people shown in Figure 13.d, the subject 
far from the sonar, near the wall is well distinguished from the 
wall (green), due to different group properties. The subject 
close to the sonar swinging his upper limbs (blue), is 
successfully estimated by the blue group. In Figure 13.e, two 
people going in opposite directions, are well estimated, even 
when the radial distance of the two people is approximately 
the same. This separation is possible due to the usage of 
continuity of location in the tracking and in grouping methods, 
and continuity of the subject’s velocity in the grouping. 

The chair and person objects are successfully mapped to 
different groups in Figure 13.f. The standard deviation of the 
standing subject is slightly higher than the chair due to slight 
movements of the standing subject. In Figure 13.g, swinging 
hands (green color), the chair (blue color) and wall, are well 
distinguished according to the group spatial standard 
deviation,     . The human group in Figure 13.h, in the 
experiment of walking toward the sonar and crossing a chair, 
is continuously successfully estimated (turquoise), not 
including some body parts near the wall that were included in 
the group related to the wall. The chair group is split into two 
groups (yellow and purple). This is reasonable, as it was 
almost fully covered by the man, when he crossed past the 
chair. In the future, information from additional sonar nodes 
deployed in different locations could be used to merge these 
two objects that relate to the chair. 

The tracking and grouping results indicate on significant 
differences in object properties between groups that are related 
to humans and non-humans. In addition to correlation and 
intensity properties, group kinematic features like velocity and 
standard deviation of object locations, can help to classify 
human groups from non-human groups, and can be a basis for 
advanced classification of human activity level and type. 

C. Object Classification 

Figure 14 shows the training set in the feature space for the 
first, second, and third classifiers after artifact removal. For 
the first classifier, (static or dynamic objects classifier), the 
clusters appear well separated. The velocity feature can 
distinguish between a walking and non-walking human, but 
can hardly distinguish between standing and swinging hands. 

The standard deviation of the group can better distinguish 
between hand swinging and standing, and even the between 
the static object (wall). The second classifier between human 
and not human is used to distinguish between a human 
standing without movement, and other static objects. The 
subject does move slightly even when standing, and its surface 
has different echoes, therefore the standard deviation can also 
be used here. However, it does not classify some of the data, 
and the correlation properties of mean and standard deviation 
over time, which indicate the surface pattern, are informative. 

For the third activity classifier, the velocity feature is the 
most significant in case of activity type that involve walking, 
while the feature of standard deviation, is more significant in 
distinguishing between swinging hands and standing still. The 
activity types in this experiment are separable in the different 
feature spaces for the three decision tree classifiers. This 
justifies the use of a relatively simple classifier like the k-NN 
classifier for an efficient performance, as it can operate well 
with separable distributions and a relatively low complexity.  

 
(a)           (b) 

 
(a)           (b) 

 
(a)           (b) 

Fig. 12. Object detection, tracking, and grouping stages in space-time 
diagram. Figure 12.a shows the result of the match filter after the thresholding 
operation. Figure 12.b shows the results of the sequential MLE object tracking 
results. Figure 12.c shows the result of object tracking of post processing, in 
which missing estimations are mitigated for each object by interpolation. The 
results of grouping are shown in Figure 12.d, where each group has a different 
color. Figure 12.e shows the results after a group merging and splitting 
algorithm based on similarity of the different group features. Figure 12.f 
shows the sort results into dynamic or static objects according to their 
standard deviation from the main object.   
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(a)           (b) 

  
(c)                                      (d) 

 
 (e)           (f) 

 
 (g)           (h) 

Figure 13 : Eight object grouping results for the experiments shown in Figure 
9: a human subject standing, swinging upper limbs, walking towards the sonar 
system and away, two people are standing, one swinging hands and one 
subject standing still; two people walking to and from the sonar system; a 
subject stands in front of a chair; a subject stands behind a chair swinging his 
hands, and a subject walks around a chair, respectively. 
 

The classification results are presented in Figure 15. The 
first classifier detected 2324, and 634, as static, and dynamic 
groups (cluster of objects), respectively. The second classifier 
identified the static groups as standing and walls. The third 
classifier distinguished between the two different activities, 
walking and swinging hands. The total number of groups in all 
the experiments were 2051, 273, 327, 307, for the classes of 
static groups (primarily the wall), standing, walking, and 
swinging arms and hands, respectively.   

Figure 15.a, shows the results for each target (group). The 
classification reference is the tagging of the groups according 
to the video reference by an independent observer. The 
classification accuracy is around 97 percent for static objects, 
and 95 percent for dynamic objects, an average of 96.6 
percent. The walking activity is classified in the 98th  
percentile. Swinging hands is occasionally misclassified as 
walking or standing, and only errors around 1% for static 
objects (wall). The wrong classification of the classes of 
walking or swinging arms, to standing or static object is 
partially explained by a towed-error from the first static-

dynamic classifier. Standing and walls are more mixed, but 
can be separated, mainly using the correlation property, based 
on the information obtained using the high-bandwidth 
transmissions. Hence, the classification errors between static 
objects and standing human are a result of the second 
classifier.  

 
(a) 

 
(b) 

 

 
 

              (c) 
Fig. 14. The feature space for the different classifiers. The ststic or dynamic; 
human or non-human, and activity type classifiers are shown in figures 14.a, 
14.b, and 14.c, respectively. 
 

Figure 15.b describes the activity types classification 
performance.  A success in classification is defined when there 
is at least one group that is classified to the correct activity. 
Similar to the classification for each object, walking is 
classified accurately (100 percent). The standing per 
experiment rate is lower than per group. In some experiments 
few groups were identified as standing, and in some none. The 
swinging of upper limbs is classified correctly in almost 90 
percent, compared to 77 percent in classification per-object. 
The average higher percentage per experiment can be 
explained by the criterion of having at least one true object 
classification out of many. This non-rigid criterion is adequate 
for tracking patient a subject activity during daily life routines, 
where detection of even one activity over a short period of 
observation time is adequate. The activity type classification 
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results are summarized by Table II.  
 

 
(a) 

 
(b) 

Fig. 15. The classification performance for classification. Figure 15.a  
describes the classification per group (object), while figure 15.b describes the 
classification per experiment. 

TABLE II  
CLASSIFIER PERFORMANCE  

 
Classifier Object Success rate 

(percent) 
Experiment success rate  
(percent) 

Standing  67.8 65.6 
Walking 97.6 100 
Swinging 
Arms 

77.5 86.7 

VII.  CONCLUSIONS AND FUTURE RESEARCH 

In this work we derive a new method to detect and classify 
human activity level and type, in a contactless manner, and 
affordably, using a simple wideband sonar system with one 
speaker and one microphone. We have developed analytical 
methods, and evaluated the technology in assessment of 
different activity types. The results show that with only one 
sonar sensor node, simple activity types, like standing still, 
standing with moving hands, or walking can be well classified. 

The high bandwidth, gives additional information about 
subject location, and can be used to detect a human in a 
regular indoor cluttered environment. The high SNR, which is 
a reasonable assumption in indoor environment, enable to 
derive from the location estimations, the kinematic 
information of the different targets. The location information 
enables use in the spatial domain and enables context aware 
applications.  

The suggested system enables accurate range and enhanced 
correlation properties, which cannot be achieved by the 
Continuous Wave (CW) Doppler based systems. Such a sonar 
based system has an affordable price, does not require 
attaching active markers or inertial sensors to the body, an 
does not use additional electro-magnetic radiation like radar 
systems. This system can work under any light conditions and 
in other risky circumstances such as in the presence of smoke 

during a fire, or high humidity conditions, as in a bath room, 
while maintaining the privacy of the patients. 

Future experiments can use shorter observation periods to 
classify more subtle activity types, can use multiple sensor 
nodes to give 2-D and 3-D tracking for enhanced classification 
accuracy and can classify more complex activity like sitting 
down, falling, or carrying a bag. Future aggregation of low 
bandwidth Doppler pulses with the FM-chirp, inspired by bio-
sonar, is expected to further improve the classification 
accuracy. 

In the future this technology is expected to enable 
continuous assessment of various kinematic features of 
humans with reduced costs, under any light conditions in 
various environments. Unlike optical cameras this system can 
detect risk circumstances even in the presence of smoke 
during a fire, or high humidity conditions, as in a bathroom, 
where the risk of falling is very high, and still maintain 
personal privacy.  
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