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Abstract—Prosody is essential for everyday human communi-
cation and provides important information about intention and
meaning. It is used for subtle expressions such as sarcasm as
well as for denoting more common expressions like questions or
declarations and even can indicate the physiological or emotional
condition of a speaker. In our previous work we presented a
Prosodic Feature Criterion (PFC) for evaluating the prosodic
nature of a feature that was extracted from speech signal.
The PFC score provides us with a way to rank the features
and determine whether an acoustic or spectral feature carries
prosodic information. In this paper we continue to explore this
mechanism, using the OpenSMILE toolkit, which is a standard
set of features widely used for acoustic analysis and prosody
research. Our experiments are carried out using a dataset of
Hebrew utterances specifically designed for prosody research.
We apply the PFC over each feature separately, thus ranking
the different features. We then compare this ranking with
classification based ranking of the same features. In addition we
show visualization of the PFC idea using dimension reduction
of multiple features representation. Both these tests, validate the
use of the PFC score, for evaluating the prosodic nature of a
feature in regards to specific prosody classes.

Index Terms—Prosody, Prosodic Features, OpenSMILE, He-
brew Dataset

I. INTRODUCTION

Prosody can be defined as the non-contextual information
conveyed in speech utterances. Prosodic cues provide valuable
information for human communication as prosody is used
to express emotional states, attitudes and intentions [1]. It
can also help in assessing mental or physiological states in
some neurological diseases [2]. Prosody has been extensively
researched in past years by linguists (e.g [3], [4], [5]) and
by speech scientists e.g. in many speech based systems such
as Text to Speech (TTS) [6], Speech Morphing [7] or Speech
based Analysis [8]. Quite a lot of work has been done towards
standardization of prosody annotation, for example ToBI [9]
which is used for annotating tones and break indices or
the IPrA Prosodic Alphabet [10]. Still, from an engineering
point of view, little attention has been given so far to gen-
eralizing and formulating the acoustic features that represent
the perceived prosodic building blocks. In [11] we presented
our approach regarding such a formulation. We defined and
evaluated an initial concept for grading the prosodic nature
of a feature using two prosody classes. This concept can be

extended to form a general framework that covers various
scenarios (e.g. multiple prosody classes, a larger feature set or
tonal languages). In this work we use a larger feature set, and
apply our methodology to a subset of the openSMILE toolkit
[12], that consists of a few thousand features, where many of
them are considered to be related to prosody or emotions.
OpenSMILE is widely used (e.g. [13], [14], [15]) and is
commonly used for classification of emotions or prosodies.
Reproducing our results for prosodic nature assessment using
this feature set supports validation of our methodology.

II. PROSODIC FEATURE CRITERION (PFC)

In our previous work [11] we proposed a simple criterion
for determining whether a specific feature conveys prosodic
information, and to what degree. Let us consider a dataset with
utterances spoken using a few prosody classes. We would like
to test whether a feature F can be declared as prosodic, in the
sense that it conveys information regarding all or some of the
prosody classes in a dataset. The criterion we have defined is
based on the following ideas: (1) A prosodic feature should
be dependent on some prosodic manifestations (2) A prosodic
feature should be independent of significant changes in ”other
aspects” of the speech utterance when the same prosody is
used. Currently, we limit the term “other aspects” to refer only
to the utterance’s content. This means we expect to see little
change in prosodic feature’s values when same or different
content is expressed with the same prosody, while we expect to
see a significant change in the feature’s values when different
prosody classes are used, even if the content is the same.

Let us formulate the above ideas: suppose we have a set
of utterances Uk

pc, where p = 1, 2...NP is an index repre-
senting the different prosodies in our dataset, c = 1, 2, ...NC

represents the different content types, i.e. different phrases,
and k = 1, 2, ...Kpc runs through all utterances of type pc,
i.e. all the utterances in our dataset with prosody p and phrase
type c. We look at pairs of utterances that are either with
the same prosody class or with different prosody classes and
calculate the dissimilarity between all pairs of utterances for
each feature F . We denote this feature as prosodic if the
following requirements hold:

1) Requirement 1: the dissimilarity between the extracted
features is sufficiently small, for most utterance pairs of
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Figure 1. Flow chart describing the proposed methodology for evaluating the prosodic nature of a feature

the same prosody p: dF
(
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pc, F
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)
< T1 for more than

x1% of the pairs, where dF (·, ·) is the dissimilarity between
two features, and T1 is some threshold we use to define
”sufficiently small”. x1 and T1 can be tuned, and dF is defined
for all features, whether they are scalars or vectors.

2) Requirement 2: the dissimilarity between extracted fea-
tures for utterance pairs of different prosody classes is higher
than T2 for most such pairs, (q 6= p): dF

(
F k
pc, F

l
qr

)
> T2 for

more than x2% of the pairs.
These requirements should hold for both cases of same or
different content type, but they are naturally stronger when the
first requirement is applied under different content conditions
and the second is applied under same content conditions.
T1, T2, x1, x2 can be tuned for each feature and for each

dataset. To make this formulation simpler, we combine the
two requirements in the following way -– we require that the
Probability Mass Functions (PMFs) of the dissimilarities of
the two examined sets (the set of utterance pairs of the same
prosody and the set of utterance pairs of different prosody
classes) will be well separated reflecting the different behavior
of the feature’s values for these two sets; This means that we
require low values of dissimilarities for the same prosody set,
and higher values of dissimilarity for the different prosody set.
If, on the other hand, we find that there is a high similarity
between the two PMFs (gsame and gdiff ), we conclude that
this feature does not carry any prosodic information, at least
for the prosody classes that were used.

Based on these requirements we proposed a simple
methodology to asses whether a single feature conveys
prosodic information regarding some or all of the prosody
classes in our data set. This methodology is described next,
and is illustrated in Fig. 1 using a block diagram depicting the
following steps: (i) Calculate dissimilarities between feature
values over all possible utterance pairs (for simplicity we
used the Euclidean distance as the dissimilarity function) (ii)
Group all pairs into two sets - ”same prosody” set (SP

same)
and ”different prosody” set (SP

diff ) (iii) For each set, evaluate
the Probability Mass Function (PMF) using the normalized
histograms of the dissimilarities (gsame and gdiff ) (iv)

Calculate the dissimilarity score, denoted Ds, between the
two PMFs (we used symmetrized KL-divergence as the
dissimilarity function between gsame and gdiff ) (v) Use a
threshold Th to decide whether the feature can be considered
prosodic, i.e. whether it conveys prosodic information.
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Figure 2. F0-Centroid dissimilarities curves. Same prosody (P1 vs. P1 in blue
and P2 vs. P2 in green) and Different prosody (P1 vs. P2 in red)

III. PFC EVALUATION

To evaluate our criterion, we use a special dataset and
versatile feature sets:

A. Data Set

The dataset should be designed to allow us to check the
two requirements defined in section II: it should consist of
different prosodic classes, in order to check whether a feature
represents prosodic manifestations for these classes. It should
also include different content classes in order to verify that
prosodic features are indeed independent of content changes.
Hence, a suitable dataset requires every content class (i.e.
every phrase) to be recorded in all prosody classes. Since
finding this kind of a dataset is difficult, we collected our own
dataset1. 36 speakers were recorded, both males and females
of various ages. Overall there are 252 utterances in Hebrew.

1Hebrew dataset is available for research only by contacting the authors
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Utterances are split into either three different content classes
(i.e. phrases) or into two different prosody classes (question
and neutral). Additional information can be found in [11].

B. Features
There are a few levels of features that can be extracted from

a speech signal. First, the Lower Level Descriptors (LLD) that
are usually calculated directly over the raw speech signal,
and in most cases are evaluated separately for each frame
or for each block of frames. Such features are F0, Energy,
Voicing, etc’. The next level of features is called Functionals,
that are calculated over the LLDs and constitute higher level
descriptors, e.g. min, max, std and more. These functionals
can be calculated using segments of various length, e.g frames,
phonemes, syllables or utterances. Finally, feature values can
be represented as a vector of the functionals values or as a
scalar that represents yet a higher level of these functionals,
e.g. std of F0 max values that were calculated over syllables.

In our framework, referring to a feature as ”prosodic”,
means that it is related to some prosodic manifestations, defi-
nitely not to all of them. Hence, our evaluation is influenced by
the choice of the dataset and the prosodies that are expressed in
the data. In other words, if a feature gets a low PFC, it only
means that the feature does not carry prosodic information
regarding the prosody classes that were used in the dataset.

1) Initial Feature Set: To demonstrate and test our method-
ology, in [11] we used a 48 features set, most of which
are considered standard in prosodic research, e.g. F0 and
its derivatives, while some are hand-crafted features, such as
duration-tilt and amplitude-tilt [8]. We also used some features
that are not considered prosodic, e.g. MFCC, in order to show
the difference between features that carry prosodic information
and features that are related to other aspects of the speech
signal.

2) Extended Feature Set - OpenSMILE: As mentioned
above, we extended our feature set using the openSMILE
toolkit [12] that is an open source toolkit for extracting
many types of acoustic and spectral features. OpenSMILE
can be used either off-line or on-line. This tool is widely
used and has been cited over 1,300 times, mainly in the
areas of speech recognition, emotion recognition, affective
computing and music information retrieval. The openSMILE
serves as a baseline acoustic feature set in many competitions,
for example AVEC 2013 challenge [16] or at Interspeech,
e.g. the 2009 emotion challenge [17], the 2010 paralinguistic
challenge [18], the 2011 speaker state challenge [19], etc’.
In this work We focus on the 2011 speaker state features
set (IS11 speaker state.conf ). The challenge had two sub-
tasks including the classification of “Alcohol Language” and
“Sleepy Language”. The feature set includes 4,368 features
composed of LLDs (Energy, Spectra, voice related, etc.) and
functionals applied over them. We chose this feature set
configuration as it is large and widely used.

IV. DATA ANALYSIS

We use several methods to represent and compare the results
to our initial work [11], to show the consistency of the
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Figure 3. PFC scores for different feature families used in [11]; High scores
for the F0 family (prosodic) and low scores for the non-prosodic MFCC family
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Figure 4. Comparison between features families. 1,000 best features out of
OpenSMILE kit show similar results to Fig 3 as F0 receives higher scores
than the Energy and MFCC families.

conclusions, and validate our criterion:
1) PFC of a Single Feature: As described in section II, in

step (iii) of our methodology, we calculate the PMFs of the
dissimilarity values, between pairs from same and different
prosody groups. Fig. 2 shows an example for the F0-Centroid
feature: instances with prosody P1 (neutral phrases) have low
dissimilarity. Instances with P2 (question phrases) manifest
higher values of dissimilarity probably due to the larger
variance between different question types and expressions.
Still, instances of P1-P2 pairs yield higher dissimilarity values,
as expected for this feature that is definitely prosodic.

2) Analyzing PFC Scores by Features Families: We cal-
culate PFC scores for a large number of features, separately
for each feature, and group them to several features’ families.
In Fig 3 we see results over the feature set used in [11],
that show high PFC scores for features of the F0 family, and
low PFC scores for features of Energy and MFCC families.
These results make sense as the MFCC family is known to be
insensitive to prosody [20]. The Energy family is considered to
be prosodic in nature [20], but due to the fact that this dataset
includes only questions and neutral sentences, it makes sense
that these features will receive low PFC scores. In Fig 4 we
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Figure 5. Comparison between PFC and classification F1 results shows
positive correlation. Both types of scores manifest similar tendency

see PFC scores for the best (i.e. highest PFC scores) 1,000
OpenSMILE features. We notice similar behavior, as the F0
family still receives the highest scores, while the Energy and
MFCC families receive lower scores. An example of families
that were not included in [11] are Jitter and Shimmer that are
not dominant in differentiating between the prosody classes in
our dataset, hence receive low PFC scores.

3) Comparison with Classification Results: PFC allows us
to grade features by the amount of prosodic information they
carry. We can then perform another grading process using
standard methods used in classifications tasks, and compare the
ranking of the features, obtained by the two sorting schemes.

As we relate only to a single feature’s ranking, we compare
our PFC-based ranking with ranking that is based on single
feature classification results. For each feature, we trained a
logistic regression classifier, while making sure train and test
sets did not contain the same speakers. Then, we used a
threshold that yielded the best F1 measure2 over the training
set. Applying this threshold to the test set, we obtained
classification accuracy for the test set. These accuracy scores
were used to rank the different features for the classification
task. Over the initial feature set, we compared the list of
the best 15 features using PFC scores vs. a list of the best
15 features using F1 scores and found out that 13 of the
features are common. Further information can be found in
[11]. Over the OpenSMILE features set, we found that out
of the best 20 features using PFC or F1 scores, 16 features
were common. Next we illustrate correlation between the two
ranking methods. In Fig 5 we see PFC scores vs. F1 scores
for the OpenSMILE feature set. There is clearly a positive
correlation between the two score types, and the correlation
coefficient for this feature set is 0.68. It is important to clarify
at this point that PFC is not a merely a feature selection
method and conveys more information about features than

2F1 measure is the harmonic mean of recall and precision: F1 =
2

1/recall+1/precision

does the F1 measure. Hence, we expect only some positive
correlation between these ranking methods.

4) Features’ Visualization: Another way of demonstrating
that a specific feature carries prosodic information is to look
at its values for different classes, and see whether they are
separable in some space. In 1D space (i.e. a single scalar
feature) we can look at the PMFs of the feature values. In
Fig. 8 we see an example of a feature that separates well
between two prosodic classes and does not separate at all the
different content classes, thus it can be considered a prosodic
feature in regard with the prosody classes under investigation.

When using more features, we need to visualize high-
dimensional data in order to check separability between the
different classes. This can be done by applying dimension
reduction schemes. In [11] we chose the t-SNE algorithm
[21], and applied it over the best PFC features out of the
initial feature set and showed very good separation between
two prosodic classes. There was no separation at all between
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Figure 6. Dimension reduction of the full Interspeech 2011 features set
including 4,368 features, showing better separation for content classes
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(bottom), showing this feature can be considered prosodic

the content classes. In this work, we apply t-SNE over: (1)
the full 4,368 features space, and (2) the best 14 prosodic
features obtained using the PFC. Fig. 6 shows that the whole
feature set did not achieve good separation between prosody
classes at all, and actually provided good separation between
the three content classes. Fig. 7 shows the opposite: dimension
reduction over a subset of the best PFC features, shows clear
separation between the prosody classes. This means that even
though this feature set is actually biased towards content
representation, the PFC succeeded in pinpointing a minimal
set of features that indeed carries prosodic information.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have shown that the PFC score presented at
[11] can be applied to a large standard feature set and provide
important information regarding the prosodic nature of some
of the features in the OpenSMILE set. The relevance of this
score was validated by: (1) Comparing the features ranking
induced by the PFC score to a ranking calculated according
to the performance of a single feature classification task
(where we classify utterances into two prosody classes). (2)
Dimension reduction algorithm that is used for visualization
of multiple features. We showed that even though the full
OpenSMILE set is biased towards content classes separation,
we were able to find, using the PFC score, some features that
carry prosodic information. Future work will address the case
of more than two prosody classes, additional experiments with
different datasets and different languages and exploration of
more elaborated schemes including a mathematical formula-
tion of the representation of prosodic information.
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